Phosphate Removal from Aqueous Solution Using Fly Ash Modified with Magnetic Fe-Zn Bimetal Oxide

Article Preview

Abstract:

In this work the adsorption of phosphate using the magnetic Fe-Zn bimetal oxide modified fly ash was studied. The experimental results showed that the effective pH range for the adsorption of phosphate was between 3.0 and 9.0. The removal percentage of phosphate reached maximum at pH 8.0. Kinetic study showed that the phosphate adsorption was well described by pseudo second order model. The removal efficiency of phosphate increased with the increase of adsorbent dosage and the decrease of the initial concentration. The adsorption of phosphate could be described well by Langmuir isotherm, the Langmuir constant Q0 was 24.15mg/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

296-302

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Karageorgiou, M. Paschalis, G.N. Anastassakis, Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent, J. Hazard. Mater., 139 (2007) 447–452.

DOI: 10.1016/j.jhazmat.2006.02.038

Google Scholar

[2] D.P. Van Vuuren, A.F. Bouwman, A.H.W. Beusen, Phosphorus demand for the 970-2100 period: a scenario analysis of resource depletion, Global Environ. Change, 20 (2010) 428–439.

DOI: 10.1016/j.gloenvcha.2010.04.004

Google Scholar

[3] W. Chouyyok, R.J. Wiacek, K. Pattamakomsan, T. Sangvanich, R.M. Grudzien, Phosphate removal by anion binding on functionalized nanoporous sorbents, Environ. Sci. Technol., 44 ( 2010) 3073–3078.

DOI: 10.1021/es100787m

Google Scholar

[4] X. Cheng, X.R. Huang, X.Z. Wang, B.Q. Zhao, A. Chen, D. Sun, Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides, J. Hazard. Mater., 169 (2009) 958–964.

DOI: 10.1016/j.jhazmat.2009.04.052

Google Scholar

[5] J.C. Liu, C.J. Chang, Precipitation flotation of phosphate from water, Colloids Surf. A, 347(2009) 215–219.

Google Scholar

[6] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177(2010) 70–80.

DOI: 10.1016/j.jhazmat.2009.12.047

Google Scholar

[7] S.G. Lu, S.Q. Bai, L. Zhu, H.D. Shan, Removal mechanism of phosphate from aqueous solution by fly ash, J. Hazard. Mater., 161(2009) 95–101.

DOI: 10.1016/j.jhazmat.2008.02.123

Google Scholar

[8] P. Pengthamkeerati, T. Satapanajaru, P. Chularuengoaksorn, Chemical modification of coal fly ash for the removal of phosphate from aqueous solution, Fuel, 87(2008) 2469–2476.

DOI: 10.1016/j.fuel.2008.03.013

Google Scholar

[9] K. Xu, T. Deng, J.T. Liu, W.G. Peng, Study on the phosphate removal from aqueous solution using modified fly ash, Fuel, 89(2010) 3668–3674.

DOI: 10.1016/j.fuel.2010.07.034

Google Scholar

[10] Y. Zhao, J. Wang, Z.K. Luan, X.J. Peng, Z. Liang, L. Shi, Removal of phosphate from aqueous solution by red mud using a factorial design, J. Hazard. Mater., 165(2009) 1193–1199.

DOI: 10.1016/j.jhazmat.2008.10.114

Google Scholar

[11] W.W. Huang, S.B. Wang, Z.H. Zhu, L. Li, X.D. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.

DOI: 10.1016/j.jhazmat.2008.01.061

Google Scholar

[12] Q.Y. Yue, Y.Q. Zhao, Q. Li, W.H. Li, B.Y. Gao, S.X. Han, Y.F. Qi, H. Yu, Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal, J. Hazard. Mater., 176 (2010) 741–748.

DOI: 10.1016/j.jhazmat.2009.11.098

Google Scholar

[13] Y.J. Xue, H.B. Hou, S.J. Zhu, Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag, J. Hazard. Mater., 162 (2009) 973–980.

DOI: 10.1016/j.jhazmat.2008.05.131

Google Scholar

[14] J.B. Xiong, Z.L. He, Q. Mahmood, D. Liu, X.E. Yang, E. Islam, Phosphate removal from solution using steel slag throughmagnetic separation, J. Hazard. Mater., 152 (2008) 211–215.

DOI: 10.1016/j.jhazmat.2007.06.103

Google Scholar

[15] J. Yang, S. Wang, Z.B. Lu, J. Yang, S.J. Lou, Converter slag–coal cinder columns for the removal of phosphorous and other pollutants, J. Hazard. Mater., 168 (2009) 331–337.

DOI: 10.1016/j.jhazmat.2009.02.024

Google Scholar

[16] M. Achak, L. Mandi, N. Ouazzani, Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter, J. Environ. Manage., 90 (2009) 2771–2779.

DOI: 10.1016/j.jenvman.2009.03.012

Google Scholar

[17] N. Selvaraju, S. Pushpavanam, Adsorption characteristics on sand and brick beds, Chem. Eng. J., 147 (2009) 130–138.

DOI: 10.1016/j.cej.2008.06.040

Google Scholar

[18] X.H. Guan, G.H. Chen, C. Shang, Adsorption behavior of condensed phosphate on aluminum hydroxide, J. Environ. Sci., 19 (2007) 312–318.

DOI: 10.1016/s1001-0742(07)60051-5

Google Scholar

[19] X.F. Yang, D.S. Wang, Z.X. Sun, H.X. Tang, Adsorption of phosphate at the aluminum (hydr)oxides–water interface: role of the surface acid–base properties, Colloids Surf. A, 297 (2007) 84–90.

DOI: 10.1016/j.colsurfa.2006.10.028

Google Scholar

[20] N. Kawasaki, F. Ogata, H. Tominaga, Selective adsorption behavior of phosphate onto aluminum hydroxide gel, J. Hazard. Mater., 181 (2010) 574–579.

DOI: 10.1016/j.jhazmat.2010.05.051

Google Scholar

[21] L. Zeng, X.M. Li, J.D. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res., 38 (2004) 1318–1326.

DOI: 10.1016/j.watres.2003.12.009

Google Scholar

[22] J.A. Rentz, I.P. Turner, J.L. Ullman, Removal of phosphorus from solution using biogenic iron oxides, Water Res., 43 (2009) 2009–(2035).

DOI: 10.1016/j.watres.2009.02.021

Google Scholar

[23] H.Y. Wu, D.H. Jiang, P. Cai, X.G. Rong, Q.Y. Huang, Effects of low-molecularweight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide, Colloids Surf. B, 82 (2011) 147–151.

DOI: 10.1016/j.colsurfb.2010.08.035

Google Scholar

[24] P. Persson, N. Nilsson, S. Sjöberg, Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface, J. Colloid Interface Sci., 177 (1996) 263-275.

DOI: 10.1006/jcis.1996.0030

Google Scholar

[25] D.C. Southam, T.W. Lewis, A.J. McFarlane, J.H. Johnston, Amorphous calcium silicate as a chemisorbent for phosphate, Curr. Appl. Phys., 4 (2004) 355–358.

DOI: 10.1016/j.cap.2003.11.047

Google Scholar

[26] M. Khadhraoui, T. Watanabe, M. Kuroda, The effect of the physical structure of a porous Ca-based sorbent on its phosphorus removal capacity, Water Res., 36 (2002) 3711–3718.

DOI: 10.1016/s0043-1354(02)00096-9

Google Scholar

[27] L.A. Rodrigues, M.L.C.P.D. Silva, Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method, Desalination, 263 (2010) 29–35.

DOI: 10.1016/j.desal.2010.06.030

Google Scholar

[28] J.B. Xiong, Q. Mahmood, Adsorptive removal of phosphate from aqueous media by peat, Desalination, 259 (2010) 59–64.

DOI: 10.1016/j.desal.2010.04.035

Google Scholar

[29] H.L. Liu, X.F. Sun, C.Q. Yin, C. Hu, Removal of phosphate by mesoporous ZrO2, J. Hazard. Mater., 151 (2008) 616–622.

Google Scholar

[30] R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Selective adsorptionof phosphate from seawater and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297 (2006) 426–433.

DOI: 10.1016/j.jcis.2005.11.011

Google Scholar

[31] Y.M. Zheng, S.F. Lim, J.P. Chen, Preparation and characterization of zirconiumbased magnetic sorbent for arsenate removal, J. Colloid Interface Sci., 338 (2009) 22–29.

DOI: 10.1016/j.jcis.2009.06.021

Google Scholar

[32] B.K. Biswas, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto, H. Kawakita, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour. Technol., 99 (2008) 8685–8690.

DOI: 10.1016/j.biortech.2008.04.015

Google Scholar

[33] S. Mustafa, M.I. Zaman, S. Khan, pH effect on phosphate sorption by crystalline MnO2, J. Colloid Interface Sci., 301 (2006) 370-375.

DOI: 10.1016/j.jcis.2006.05.020

Google Scholar

[34] Y. Zhang, H. Wang, B. Yan, Y.W. Zhang, J.S. Li, G.L. Shen, R.Q. Yu, A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite, J. Immunol. Methods, 332 (2008) 103–111.

DOI: 10.1016/j.jim.2007.12.019

Google Scholar

[35] Y.M. Ren, M.L. Zhang, D. Zhao, Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper, Desalination, 228 (2008) 135–149.

DOI: 10.1016/j.desal.2007.08.013

Google Scholar

[36] Y. Bulut, Z. Tez, Removal of heavy metal ions by modified sawdust of walnut, Fresenius Environ. Bull., 12 (2003) 1499-1504.

Google Scholar

[37] Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735-742.

DOI: 10.1016/s0043-1354(99)00232-8

Google Scholar

[38] J.R. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Engng. Div. Am. Soc. Civ. Engrs., 89 (1963) 31-39.

Google Scholar

[39] F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1-8.

DOI: 10.1016/j.cej.2009.04.042

Google Scholar