[1]
K. Karageorgiou, M. Paschalis, G.N. Anastassakis, Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent, J. Hazard. Mater., 139 (2007) 447–452.
DOI: 10.1016/j.jhazmat.2006.02.038
Google Scholar
[2]
D.P. Van Vuuren, A.F. Bouwman, A.H.W. Beusen, Phosphorus demand for the 970-2100 period: a scenario analysis of resource depletion, Global Environ. Change, 20 (2010) 428–439.
DOI: 10.1016/j.gloenvcha.2010.04.004
Google Scholar
[3]
W. Chouyyok, R.J. Wiacek, K. Pattamakomsan, T. Sangvanich, R.M. Grudzien, Phosphate removal by anion binding on functionalized nanoporous sorbents, Environ. Sci. Technol., 44 ( 2010) 3073–3078.
DOI: 10.1021/es100787m
Google Scholar
[4]
X. Cheng, X.R. Huang, X.Z. Wang, B.Q. Zhao, A. Chen, D. Sun, Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides, J. Hazard. Mater., 169 (2009) 958–964.
DOI: 10.1016/j.jhazmat.2009.04.052
Google Scholar
[5]
J.C. Liu, C.J. Chang, Precipitation flotation of phosphate from water, Colloids Surf. A, 347(2009) 215–219.
Google Scholar
[6]
M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177(2010) 70–80.
DOI: 10.1016/j.jhazmat.2009.12.047
Google Scholar
[7]
S.G. Lu, S.Q. Bai, L. Zhu, H.D. Shan, Removal mechanism of phosphate from aqueous solution by fly ash, J. Hazard. Mater., 161(2009) 95–101.
DOI: 10.1016/j.jhazmat.2008.02.123
Google Scholar
[8]
P. Pengthamkeerati, T. Satapanajaru, P. Chularuengoaksorn, Chemical modification of coal fly ash for the removal of phosphate from aqueous solution, Fuel, 87(2008) 2469–2476.
DOI: 10.1016/j.fuel.2008.03.013
Google Scholar
[9]
K. Xu, T. Deng, J.T. Liu, W.G. Peng, Study on the phosphate removal from aqueous solution using modified fly ash, Fuel, 89(2010) 3668–3674.
DOI: 10.1016/j.fuel.2010.07.034
Google Scholar
[10]
Y. Zhao, J. Wang, Z.K. Luan, X.J. Peng, Z. Liang, L. Shi, Removal of phosphate from aqueous solution by red mud using a factorial design, J. Hazard. Mater., 165(2009) 1193–1199.
DOI: 10.1016/j.jhazmat.2008.10.114
Google Scholar
[11]
W.W. Huang, S.B. Wang, Z.H. Zhu, L. Li, X.D. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.
DOI: 10.1016/j.jhazmat.2008.01.061
Google Scholar
[12]
Q.Y. Yue, Y.Q. Zhao, Q. Li, W.H. Li, B.Y. Gao, S.X. Han, Y.F. Qi, H. Yu, Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal, J. Hazard. Mater., 176 (2010) 741–748.
DOI: 10.1016/j.jhazmat.2009.11.098
Google Scholar
[13]
Y.J. Xue, H.B. Hou, S.J. Zhu, Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag, J. Hazard. Mater., 162 (2009) 973–980.
DOI: 10.1016/j.jhazmat.2008.05.131
Google Scholar
[14]
J.B. Xiong, Z.L. He, Q. Mahmood, D. Liu, X.E. Yang, E. Islam, Phosphate removal from solution using steel slag throughmagnetic separation, J. Hazard. Mater., 152 (2008) 211–215.
DOI: 10.1016/j.jhazmat.2007.06.103
Google Scholar
[15]
J. Yang, S. Wang, Z.B. Lu, J. Yang, S.J. Lou, Converter slag–coal cinder columns for the removal of phosphorous and other pollutants, J. Hazard. Mater., 168 (2009) 331–337.
DOI: 10.1016/j.jhazmat.2009.02.024
Google Scholar
[16]
M. Achak, L. Mandi, N. Ouazzani, Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter, J. Environ. Manage., 90 (2009) 2771–2779.
DOI: 10.1016/j.jenvman.2009.03.012
Google Scholar
[17]
N. Selvaraju, S. Pushpavanam, Adsorption characteristics on sand and brick beds, Chem. Eng. J., 147 (2009) 130–138.
DOI: 10.1016/j.cej.2008.06.040
Google Scholar
[18]
X.H. Guan, G.H. Chen, C. Shang, Adsorption behavior of condensed phosphate on aluminum hydroxide, J. Environ. Sci., 19 (2007) 312–318.
DOI: 10.1016/s1001-0742(07)60051-5
Google Scholar
[19]
X.F. Yang, D.S. Wang, Z.X. Sun, H.X. Tang, Adsorption of phosphate at the aluminum (hydr)oxides–water interface: role of the surface acid–base properties, Colloids Surf. A, 297 (2007) 84–90.
DOI: 10.1016/j.colsurfa.2006.10.028
Google Scholar
[20]
N. Kawasaki, F. Ogata, H. Tominaga, Selective adsorption behavior of phosphate onto aluminum hydroxide gel, J. Hazard. Mater., 181 (2010) 574–579.
DOI: 10.1016/j.jhazmat.2010.05.051
Google Scholar
[21]
L. Zeng, X.M. Li, J.D. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res., 38 (2004) 1318–1326.
DOI: 10.1016/j.watres.2003.12.009
Google Scholar
[22]
J.A. Rentz, I.P. Turner, J.L. Ullman, Removal of phosphorus from solution using biogenic iron oxides, Water Res., 43 (2009) 2009–(2035).
DOI: 10.1016/j.watres.2009.02.021
Google Scholar
[23]
H.Y. Wu, D.H. Jiang, P. Cai, X.G. Rong, Q.Y. Huang, Effects of low-molecularweight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide, Colloids Surf. B, 82 (2011) 147–151.
DOI: 10.1016/j.colsurfb.2010.08.035
Google Scholar
[24]
P. Persson, N. Nilsson, S. Sjöberg, Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface, J. Colloid Interface Sci., 177 (1996) 263-275.
DOI: 10.1006/jcis.1996.0030
Google Scholar
[25]
D.C. Southam, T.W. Lewis, A.J. McFarlane, J.H. Johnston, Amorphous calcium silicate as a chemisorbent for phosphate, Curr. Appl. Phys., 4 (2004) 355–358.
DOI: 10.1016/j.cap.2003.11.047
Google Scholar
[26]
M. Khadhraoui, T. Watanabe, M. Kuroda, The effect of the physical structure of a porous Ca-based sorbent on its phosphorus removal capacity, Water Res., 36 (2002) 3711–3718.
DOI: 10.1016/s0043-1354(02)00096-9
Google Scholar
[27]
L.A. Rodrigues, M.L.C.P.D. Silva, Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method, Desalination, 263 (2010) 29–35.
DOI: 10.1016/j.desal.2010.06.030
Google Scholar
[28]
J.B. Xiong, Q. Mahmood, Adsorptive removal of phosphate from aqueous media by peat, Desalination, 259 (2010) 59–64.
DOI: 10.1016/j.desal.2010.04.035
Google Scholar
[29]
H.L. Liu, X.F. Sun, C.Q. Yin, C. Hu, Removal of phosphate by mesoporous ZrO2, J. Hazard. Mater., 151 (2008) 616–622.
Google Scholar
[30]
R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Selective adsorptionof phosphate from seawater and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297 (2006) 426–433.
DOI: 10.1016/j.jcis.2005.11.011
Google Scholar
[31]
Y.M. Zheng, S.F. Lim, J.P. Chen, Preparation and characterization of zirconiumbased magnetic sorbent for arsenate removal, J. Colloid Interface Sci., 338 (2009) 22–29.
DOI: 10.1016/j.jcis.2009.06.021
Google Scholar
[32]
B.K. Biswas, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto, H. Kawakita, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour. Technol., 99 (2008) 8685–8690.
DOI: 10.1016/j.biortech.2008.04.015
Google Scholar
[33]
S. Mustafa, M.I. Zaman, S. Khan, pH effect on phosphate sorption by crystalline MnO2, J. Colloid Interface Sci., 301 (2006) 370-375.
DOI: 10.1016/j.jcis.2006.05.020
Google Scholar
[34]
Y. Zhang, H. Wang, B. Yan, Y.W. Zhang, J.S. Li, G.L. Shen, R.Q. Yu, A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite, J. Immunol. Methods, 332 (2008) 103–111.
DOI: 10.1016/j.jim.2007.12.019
Google Scholar
[35]
Y.M. Ren, M.L. Zhang, D. Zhao, Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper, Desalination, 228 (2008) 135–149.
DOI: 10.1016/j.desal.2007.08.013
Google Scholar
[36]
Y. Bulut, Z. Tez, Removal of heavy metal ions by modified sawdust of walnut, Fresenius Environ. Bull., 12 (2003) 1499-1504.
Google Scholar
[37]
Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735-742.
DOI: 10.1016/s0043-1354(99)00232-8
Google Scholar
[38]
J.R. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Engng. Div. Am. Soc. Civ. Engrs., 89 (1963) 31-39.
Google Scholar
[39]
F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1-8.
DOI: 10.1016/j.cej.2009.04.042
Google Scholar