Real Time Synchrotron X-Ray Imaging for Nucleation and Growth of Cu6Sn5 in Sn-7Cu-0.05Ni High Temperature Lead-Free Solder Alloys

Article Preview

Abstract:

This paper demonstrates how recent progress for real-time solidification observation at SPring-8 synchrotron has contributed to the development of Sn-7wt%Cu-0.05wt%Ni high temperature lead-free solder alloys. Lead-free solder alloys in the composition range Sn-0.7 to 7.6wt%Cu that consist of primary Cu6Sn5 in a eutectic Sn-Cu6Sn5 matrix have been proposed as solders for application at temperatures up to 400°C for the assembly high current semiconductors. It is shown that trace levels of Al have a marked effect on the solder microstructure and refine the size of the primary Cu6Sn5. The solidification pathway that leads to the refinement was observed in real-time using X-ray synchrotron observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-204

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Abtew and G. Selvaduray: Materials Science and Engineering: R: Reports, 27 (2000), p.95.

Google Scholar

[2] K. Zeng and K. N. Tu: Materials Science and Engineering: R: Reports, 38 (2002), p.55.

Google Scholar

[3] K. Suganuma: Current Opinion in Solid State & Materials Science, 5 (2001), p.55.

Google Scholar

[4] H. Okamoto: Phase Diagrams of Dilute Binary Alloys, (ASM International, 2002. 2002).

Google Scholar

[5] I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra and O. Unal: Journal of Electronic Materials, 30 (2001), p.1050.

Google Scholar

[6] K. Suganuma, S. -J. Kim and K. -S. Kim: JOM, 61 (2009), p.64.

Google Scholar

[7] K. Nogita, C. M. Gourlay and T. Nishimura: JOM, 61 (2009), p.45.

Google Scholar

[8] D. Mu, J. Read, Y. -F. Yang and K. Nogita: Journal of Materials Research, 26 (2011), p.2660.

Google Scholar

[9] A. K. Larsson, L. Stenberg and S. Lidin: Zeitschrift fur Kristallographie, 210 (1995), p.832.

Google Scholar

[10] G. Ghosh and M. Asta: Journal of Materials Research, 20 (2005), p.3102.

Google Scholar

[11] T. Laurila, V. Vuorinen and M. Paulasto-Krockel: Materials Science and Engineering R, 68 (2010), p.1.

Google Scholar

[12] K. Nogita, C. M. Gourlay, S. D. McDonald, Y. Q. Wu, J. Read and Q. F. Gu: Scripta Materialia, 65 (2011), p.922.

DOI: 10.1016/j.scriptamat.2011.07.058

Google Scholar

[13] K. Nogita and T. Nishimura: Scripta Materialia, 59 (2008), p.191.

Google Scholar

[14] K. Nogita: Intermetallics, 18 (2010), p.145.

Google Scholar

[15] U. Schwingenschlögl, C. d. Paola, K. Nogita and C. M. Gourlay: Applied Physics Letters, 96 (2010), p.061908.

Google Scholar

[16] C. -Y. Yu and J. -G. Duh: Scripta Materialia, 65 (2011), p.783.

Google Scholar

[17] G. Zeng, S. D. McDonald, Q. Gu and K. Nogita: Journal of Materials Research, in print (2012).

Google Scholar

[18] S. Lidin and S. Y. Piao: Zeitschrift fur Anorganische und Allgemeine Chemi 635 (2009), p.611.

Google Scholar

[19] H. Yasuda, K. Nogita, C. M. Gourlay, M. Yoshiya and T. Nagira: Journal of the Japan Welding Society, 78 (2009), p.6.

Google Scholar

[20] H. Yasuda, Y. Yamamoto, N. Nakatsuka, T. Nagira, M. Yoshiya, A. Sugiyama, I. Ohnaka, K. Umetani and K. Uesugi: Int. J. Cast Met. Res., 22 (2009), p.15.

DOI: 10.1179/136404609x368118

Google Scholar