Comparison Studies of Blend and Unblend GPE Systems: Ionic Conductivity, Structural and Morphological Properties

Article Preview

Abstract:

Studies on comparison of blend and unblend PMMA-based gel polymer electrolytes containing LiClO4 salt with EC and PC as plasticizing solvent is reported. The GPE samples are prepared by varying the salt concentrations from 5 wt.% to 30 wt.%. At room temperature, PVdF-HFP/PMMA blend GPE exhibits the highest conductivity of 4.71 x 10-3 S cm-1 containing 25 wt.% of LiClO4 salt while the highest conductivity for unblend GPE is 3.34 x10-3 S cm-1 containing 20 wt.% of LiClO4 salt. The amorphous nature and morphological properties between LiClO4 salt, EC and PC in the blend and unblend GPE systems have been validated using XRD and FESEM analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-210

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ahmad: Ionics Vol. 15 (2009), p.309 – 321.

Google Scholar

[2] A. M. Stephan: Eur. Polym. J. Vol. 42 (2006), pp.21-42.

Google Scholar

[3] B. Scrosati, F. Croce, S. Penero: J. Power Sources Vol. 100 (2001), pp.93-100.

Google Scholar

[4] N. H. Idris, M. M. Rahman, Jia-Zhao Wang, Hua-Kun Liu: J. Power Sources Vol. 201 (2012), pp.294-300.

Google Scholar

[5] M. Rao, X. Geng, Y. Leo, S. Hu, W. Li: J. Membrane Sci. Vol. 400 (2012), pp.37-42.

Google Scholar

[6] M. Alamgir, K.M. Abraham: J. Electrochim. Soc. Vol. 140 (1993), pp.96-101.

Google Scholar

[7] Y. Saito, C. Capigila, H. Yamamoto, P. Mustarelli: J. Electrochem. Soc. Vol. 140 (2000), pp.1645-1650.

Google Scholar

[8] D. Saikia, A. Kumar, Electrochemica Acta Vol. 49 (2004), pp.2581-2589.

Google Scholar

[9] G. B Appetecchi, F. Croce, B. Scrosati: Electrochem. Acta Vol. 40 (1995), p.991.

Google Scholar

[10] J. J. Xu, H. Ye: Electrochemistry Commun. Vol. 7 (2005), pp.829-835.

Google Scholar

[11] A. R. Kulkarni: Solid State Ionic: Trends in the New Millennium (2002), pp.273-283.

Google Scholar

[12] Harinder Pal Singh, S. S. Sekkhon: Eur. Polym. J. Vol. 39 (2003), pp.93-98.

Google Scholar

[13] A. Manuel Stephan, Y. Saito: Solid State Ionics Vol. 148 (2002), pp.475-481.

Google Scholar

[14] L. Othman, K. W. Chew and Z. Osman: Ionics Vol. 13 (2007), pp.337-342.

Google Scholar

[15] M. M. Silva, S. C. Barros, M. J. Smith, J. R. MacCallum, J. Power Sources Vol. 111(2002), pp.52-57.

Google Scholar

[16] O. Bhonke, G. Frand, M. Rezrazzi, C. Ruosselot, C. Truche: Solid State Ionics Vol. 66 (2000), pp.97-103.

Google Scholar

[17] M. Deepa, N. Sharma, S. A. Agnihotry, R. Chandra, S.S. Sekkhon: Solid State Ionics Vol. 148 (2002), pp.451-456.

Google Scholar

[18] J.R. MacCallum, and C.A. Vincent (eds): Polymer electrolytes Reviews – 1 (Elsevier, New York 1987).

Google Scholar

[19] S. Selvasekarapandian, R. Baskaran and M. Hema: Phys. B 357 (2005), p.412.

Google Scholar

[20] J. Xi, X. Tang: Electrochim. Acta, Vol. 50 (2005), pp.5293-5304.

Google Scholar

[21] A. M Stephan , T. P Kumar, N. G Renganathan, S. Pitchumani, R. Thirunakaran, N. Muniyandi, Journal power of Sources Vol. 89 (2000), pp.124-126.

DOI: 10.1016/s0378-7753(00)00379-7

Google Scholar

[22] Jian-Hou Cao, Bao-Ku Zhu, You-Yi Xu, J. Membrane Sci. Vol. 281 (2006), pp.446-453.

Google Scholar

[23] S. Ramesh, C. W. Liew, K. Ramesh: Journal of Non-Cryst. Solids S. Ramesh, C. W. Liew, K. Ramesh: J. Non-Cryst. Solids Vol. 357 (2011), pp.2132-2138.

DOI: 10.1016/j.jnoncrysol.2011.03.004

Google Scholar