Sub 10nm Nanopore Sculpturing with Focused Electron Beam on Single Layer Graphene Oxide Film

Article Preview

Abstract:

DNA sequencing by nanopore is a technique to detect DNA sequence by making the DNA strain passing through the nanopore material and measureing some characteristic parameters to determine the order of the four kinds of base-pairs. Graphene nanopore research becomes a hotspot for the DNA sequencing technology. In this paper, a kind of novel nanopore on graphene oxide is sculptured with FEB(Focused Electron Beam) to overcome the problem about the high noise for graphene nanopore. By tuning FEB parameters, e.g. the accelerating voltage, the spot number, the exposure time and the amplification factor, sub 10nm nanopores on single layer GO(Graphene Oxide) film will be achieved. At the same time, some challenges are discussed: difficult to get stable size, hard to take TEM pictures and hard to get relatively smaller size.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

154-159

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jay Shendure & Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnology 26, 1135-1145(2008).

DOI: 10.1038/nbt1486

Google Scholar

[2] Pushpendra K. Gupta. Single-molecule DNA sequencing technologies for future genomics research. Trends in Biotechnology 26, 602-611(2008).

DOI: 10.1016/j.tibtech.2008.07.003

Google Scholar

[3] J. D. Watson and F. H. C. Crick. A structure for Deoxyribose Nucleic Acid. Nature 171, 737-738(1953).

DOI: 10.1038/171737a0

Google Scholar

[4] S. T. Bennett, C. Barnes, A. Cox, L. Davies, C. Brown. Toward the 1, 000 dollars human genome. Pharmacogenomics, 6(2005), pp.373-382.

DOI: 10.1517/14622416.6.4.373

Google Scholar

[5] Olena Morozova, Marco A. Marra, Applications of next-generation sequencing technologies in functional genomics, Genomics 92, 255-264(2008).

DOI: 10.1016/j.ygeno.2008.07.001

Google Scholar

[6] Minsoung Rhee, Mark A. Burns. Nanopore sequencing technology: research trends and applications. Trends in Biotechnology 24, 580-586(2006).

DOI: 10.1016/j.tibtech.2006.10.005

Google Scholar

[7] Grégory F. Schneider, Stefan W. Kowalczyk, Victor E. Calado, Grégory Pandraud, Henny W. Zandbergen, Lieven M. K. Vandersypen and Cees Dekker. DNA Translocation through Graphene Nanopores. Nano Letters, 2010, 10(8), pp.3163-3167.

DOI: 10.1021/nl102069z

Google Scholar

[8] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton& J. A. Golovchenko. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-193(09 September 2010).

DOI: 10.1038/nature09379

Google Scholar

[9] Tammie Nelson, Bo Zhang, and Oleg V. Prezhdo. Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Letters, 2010, 10, 3237-3242.

DOI: 10.1021/nl9035934

Google Scholar

[10] Ning Lu, Jinguo Wang, Herman C. Floresca, Moon J. Kim. In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200℃. Carbon 50, 2961-2965(2012).

DOI: 10.1016/j.carbon.2012.02.078

Google Scholar

[11] Cees Dekker. Solid-state nanopores. Nature Nanotechnology 2, 209 - 215(2007).

Google Scholar

[12] Yanwu Zhu , Shanthi Murali , Weiwei Cai , Xuesong Li , Ji Won Suk , Jeffrey R. Potts , and Rodney S. Ruoff. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 22, 3906-3924(2010).

DOI: 10.1002/adma.201001068

Google Scholar

[13] R. M. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker. Noise in solid-state nanopores. PNAS 105(2), 417-421(2008).

DOI: 10.1073/pnas.0705349105

Google Scholar

[14] Owen C. Compton and SonBinh T. Nguyen. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for carbon-based materials. Small 6(6), 711-723(2010).

DOI: 10.1002/smll.200901934

Google Scholar

[15] Zuzanna S. Siwy and Matthew Davenport. Graphene opens up to DNA. Nature Nanotechnology 5, 697-698(2010).

DOI: 10.1038/nnano.2010.198

Google Scholar

[16] Ken Healy. Nanopore-based single-molecule DNA analysis. Nanomedicine 2(4), 459-481(2007).

DOI: 10.2217/17435889.2.4.459

Google Scholar

[17] Hagan Bayley. Holes with an edge. Nature 467, 164-165(2010).

Google Scholar

[18] A. -L. Biance, J. Gierak, É. Bourhis, A. Madouri, X. Lafosse, G. Patriarche, G. Oukhaled, C. Ulysse, J. -C. Galas, Y. Chen, L. Auvray, Focused ion beam sculpted membranes for nanoscience tooling. Microelectronic Engineering 83, 1474-1477(2006).

DOI: 10.1016/j.mee.2006.01.133

Google Scholar

[19] Michael D. Fischbein and Marija Drndić. Electron Beam Nanosculpting of Suspended Graphene Sheets. Applied Physics Letters 93. Issue 11, id. 113107 (3 pages) (2008).

DOI: 10.1063/1.2980518

Google Scholar

[20] ZHOU XiaoGuang, REN LuFeng, LI YunTao, ZHANG Meng, YU YuDe& YU Jun. The next-generation sequencing technology: A technology review and future perspective. Science China-Life Science, January 2010, Vol. 53, No. 1: 44-57.

DOI: 10.1007/s11427-010-0023-6

Google Scholar