Negative Electron Affinity AlGaAs/GaAs Photocathodes with Exponential-Doping Structure

Article Preview

Abstract:

Obtaining photocathodes with high quantum yield has been the focus during the process of photocathode development. With the limitation of basic industrial manufacturing level, the further performance improvement of the negative electron affinity photocathode is subject to the quality of grown material itself. For this reason, according to the band engineering science, we have proposed an exponential-doping structure applied to the active-layer of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes via molecular beam epitaxy technique, to increase the photocathode emission efficiency. A series of theoretical and experimental researches including structure design, material growth, surface cleanness, Cs-O activation and performance evaluation have been carried out to confirm the actual effect of exponential-doping photocathodes. As a result of the built-in electric field, the cathode performance was enhanced for exponential-doping AlGaAs/GaAs photocathodes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

160-166

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Sommer, Proceedings of SPIE, 2022 (1993) pp.2-7.

Google Scholar

[2] W.E. Spicer, Applied Physics, 12 (1977) pp.115-130.

Google Scholar

[3] B.F. Williams, J.J. Tietjen, Proceedings of the IEEE, 59 (1971) pp.1489-1497.

Google Scholar

[4] R.U. Martinelli, D.G. Fisher, Proceedings of the IEEE, 62 (1974) pp.1339-1360.

Google Scholar

[5] A.W. Baum, W.E. Spicer, R.F.W. Pease, et al, Proceedings of SPIE, 2522 (1995) pp.208-219.

Google Scholar

[6] T. Siggins, C. Sinclair, C. Bohn, et al, Nuclear Instruments and Methods in Physics Research A, 475 (2001) pp.549-553.

Google Scholar

[7] T. Maruyama, A. Brachmanna, J.E. Clendenin, et al, Nuclear Instruments and Methods in Physics Research A, 492 (2002) pp.199-211.

Google Scholar

[8] J.P. Estrera, T. Ostromek, A. Bacarella, et al, Proceedings of SPIE, 4796 (2003) pp.49-59.

Google Scholar

[9] D. Majumdar, S.K. Dutta, S. Chatterjee, et al. Solar Energy Materials & Solar Cells, 81 (2004) pp.459-468.

DOI: 10.1016/j.solmat.2003.11.023

Google Scholar

[10] M. Kwon, I. Park, J. Kim, et al, IEEE Photonics Technology Letters, 19 (2007) pp.1880-1882.

Google Scholar

[11] J.J. Zou, B.K. Chang, Optical Engineering, 45 (2006) p.054001.

Google Scholar

[12] X.F. Wang, Y.P. Zeng, B.Q. Wang, et al, Applied Surface Science, 252 (2006) pp.4104-4109.

Google Scholar

[13] Z. Yang, B.K. Chang, J.J. Zou, et al, Applied Optics, 46 (2007) pp.7035-7019.

Google Scholar

[14] J. Niu, Y.J. Zhang, B.K. Chang, et al, Applied Optics, 48 (2009) pp.5445-5450.

Google Scholar

[15] Y.J. Zhang, J. Niu, J. Zhao, et al, Journal of Applied Physics, 108 (2010) p.093108.

Google Scholar

[16] W.E. Spicer, A. Herrera-Gómez, Proceedings of SPIE, 2022 (1993) pp.18-33.

Google Scholar

[17] J.J. Zou, B.K. Chang, Z. Yang, Acta Physica Sinica, 56 (2007) pp.2992-2997.

Google Scholar

[18] L. Chen, Y.S. Qian, B.K. Chang, Optoelectronics and Advanced Materials-Rapid Communications, 4 (2010) p.1964-(1967).

Google Scholar

[19] Y.J. Zhang, B.K. Chang, Z. Yang, et al, Applied Optics, 48 (2009) pp.1715-1720.

Google Scholar

[20] S. Moré, S. Tanaka, S. Tanaka, et al, Surface Science, 527 (2003) pp.41-50.

Google Scholar