[1]
Motoba, K., Nishizawa, H., Suzuki, T., Hamaguchi, H., Uchida, M., Funayama, S., 2000. Species-Specific Detoxification Metabolism of Fenpyroximate, a Potent Acaricide. Pestic. Biochem. Physiol. 67, 73–84.
DOI: 10.1006/pest.2000.2477
Google Scholar
[2]
Pesticides Residue Evaluation for Fenpyroximate. Pesticides evaluated by JMPR and JMPS. Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 1995. http://www.fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/95_eva/fenpyro.pdf
DOI: 10.1142/9781786341693_0004
Google Scholar
[3]
Na Na, Guo H. R., Zhang S. C., Li Z. J., Yin L. C. In vitro and in vivo acute toxicity of fenpyroximate to flounder Paralichthys olivaceus and its gill cell line FG. Aquatic Toxicology 92 (2009) 76–85.
DOI: 10.1016/j.aquatox.2008.12.006
Google Scholar
[4]
Mark, G. J. H, Michael K., David S., Carmel M., John O'Halloran, Nora M. O'Brien, and Frank N.A.M. van Pelt, 2007. Hepatic biomarkers of sediment-associated pollution in juvenile turbot, Scophthalmus maximus L. Mar. Environ. Res. 64(2), 191-208.
DOI: 10.1016/j.marenvres.2007.01.002
Google Scholar
[5]
Telli-Karakoç, F., Ruddockc, P. J., Birdc, D. J., Hewerd, A., Van Schankee, A., Phillips, D. H., and Peters, L. D., 2002. Correlative changes in metabolism and DNA damage in turbot (Scophthalmus maximus) exposed to benzo[a]pyrene. Mar. Environ. Res. 54(3-5), 511-515.
DOI: 10.1016/s0141-1136(02)00192-7
Google Scholar
[6]
Susan, M. S., Susan, C. F., Ronald, M. S., and Anne, B. J., 2000. Sub-Lethal Effects of Exposure of Juvenile Turbot to Oil Produced Water. Mar. Pollut. Bul. 40(11), 928-937.
DOI: 10.1016/s0025-326x(00)00031-x
Google Scholar
[7]
Rosety-Rodríguez, M., Ordoñez, F.J., Roldan, S., Rosety, J.M., Rosety, M., Ribelles, A., Carrasco, C., Rosety, I., 2010. Acute effects of sodium dodecyl sulphate on the survival and on morpho-histochemical characteristics of the trunk kidney of juvenile turbot Scophthalmus maximus L. Eur. J. Histochem. 46(2), 179-184.
DOI: 10.4081/1668
Google Scholar
[8]
Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
DOI: 10.1016/0003-2697(76)90527-3
Google Scholar
[9]
Zheng, Y., Zhang, J., Lou, Y., 2002. Influences of rat liver microsome simple preparation methods to glutathione S-tranferase activity. J. Zhejiang UNi. (Medical Sciences). 31(6), 429-432.
Google Scholar
[10]
Lemaire, P., Mathieu, A., Giudicelli, J., Lafaurie, M., 1992. Effects of diet on the responses of hepatic biotransformation enzymes to benzo(a)pyrene in the European sea bass (Dicentrarchus labrax). Comp. Biochem. Physiol. 102C, 413-420.
DOI: 10.1016/0742-8413(92)90135-t
Google Scholar
[11]
Goksøy, A., Förlin, L., 1992. The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxico1. 22, 287-312.
DOI: 10.1016/0166-445x(92)90046-p
Google Scholar
[12]
George, S.G., 1994. Enzymology and molecular biology of Phase II xenobiotic conjugating enzymes in fish. In: Malins, D.C. Ostrander, G.K. (Eds.), Aquatic Toxicology, Molecular, Biochemical and Cellular Perspectives. Lewis, Boca Raton, FL, pp.37-85.
Google Scholar
[13]
Peters, L.D., Morse, H.R., Waters, R., Livingstone, D.R., 1997. Responses of hepatic cytochrome P4501A and formation of DNA—adducts in juveniles of turbot (Scophthalmus maximus L.) exposed to water-borne benzo[a]pyrene. Aquat. Toxicol. 38, 67-82.
DOI: 10.1016/s0166-445x(96)00838-7
Google Scholar