[1]
C. Bartholdy, J.P. Christensen, D. Wodarz, A.R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infection with lymphocytic choriomeningitis virus, J. Virol. 74 (2000).
DOI: 10.1128/jvi.74.22.10304-10311.2000
Google Scholar
[2]
K. Wang, W. Wang, X. Liu, Global stability in a viral infection model with lytic and nonlytic immune response, J. Comput. Appl. Math. 51 (2007) 1593–1610.
DOI: 10.1016/j.camwa.2005.07.020
Google Scholar
[3]
K. Wang, W. Wang, H. Pang, X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D 226 (2007) 197–208.
DOI: 10.1016/j.physd.2006.12.001
Google Scholar
[4]
X. Song, S. Wang, X. Zhou, Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response, J. Appl. Math. Comput. 33(2010) 251–265.
DOI: 10.1007/s12190-009-0285-y
Google Scholar
[5]
Q. Xie, D. Huang, S. Zhang, J. Cao, Analysis of a viral infection model with delayed immune response, Appl. Math. Model. 34 (2010) 2388–2395.
DOI: 10.1016/j.apm.2009.11.005
Google Scholar
[6]
X. Song, S. Wang, J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl. 373 (2011) 345–355.
DOI: 10.1016/j.jmaa.2010.04.010
Google Scholar
[7]
X. Zhou, X. Song, X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math. Comput. 199 (1) (2008) 23–38.
DOI: 10.1016/j.amc.2007.09.030
Google Scholar
[8]
P.W. Nelson, A.S. Perelson, Mathematical analysis of a delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002) 73–94.
DOI: 10.1016/s0025-5564(02)00099-8
Google Scholar
[9]
M. Chen and H. Zhu, Dynamics of a HIV infection model with delay in immune response, J. Biomath, vol. 24(4) , 2009, pp.624-634.
Google Scholar
[10]
Hale J K. Theory of Functional Differential Equations[M]. New York: Springer-Verlag, (1997).
Google Scholar
[11]
LaSalle J P. The stability of dynamical system[C]/ Regional Conference Series in Applied Mathematics. Philadelphia: SIMA, (1976).
Google Scholar
[12]
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,. SIAM J, Math Anal, vol. 33 , 2002, pp.1144-1165.
DOI: 10.1137/s0036141000376086
Google Scholar
[13]
J. Li,Z. Ma, Stability switches in a class of characteristic equations with delay-dependent parameters, Nonlinear Analysis: Real World Applications, vol. 5 , 2004, pp.389-408.
DOI: 10.1016/j.nonrwa.2003.06.001
Google Scholar
[14]
J. Hale and S.V. Lunel,. Introduction to Functional Differential Equations, Springer, New York , (1993).
Google Scholar