Effects of Cold Atmospheric Pressure Plasma Jeton the Viability of Bacillus subtilis Endospores

Article Preview

Abstract:

In this study, we conducted experiments to investigate the effectiveness of a non-equilibrium Ar-N2 plasma jet generated by a Cold Atmospheric Pressure Plasma Torch (CAPPLAT) at a sinusoidal voltage of 20 kV, frequency of 30 kHz with 10 slm of Ar gas and 100 sccm of N2 gas. Highly environmental stress resistant bacterial endospores of Bacillus subtilis, dried on an agar disc were exposed to the plasma discharge from the CAPPLAT for different durations. The viability of spores after plasma exposure was checked by counting CFUs by serial dilution method. We also measured the amount of released DPA (dipicolinic acid, pyridine-2, 6-dicarboxylic acid), which is exclusively found in endospore protoplast (cortex), to confirm the disintegration of the cortex. We could successfully inactivate a population of Bacillus endospores of about 1.0 × 107 to 4.0 × 107 spores/ml.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-531

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Park, I. Henins, H.W. Herrmann, G.S. Selwyn: J. Appl. Phys. Vol. 89 (2001), p.20.

Google Scholar

[2] Y.H. Kim, Y.H. Choi, J.K. Park, et al.: Surf. Coat. Technol., Vol. 174-175 (2003), p.535.

Google Scholar

[3] F. Massines, P. Ségur, N. Gherardi, C. Khamphan, A. Ricard: Surf. Coat. Technol., Vol. 174-175 (2003), p.8.

Google Scholar

[4] X. Fei, Y. Kondo, T. Mori, K. Hosoi, S. Kuroda: J. Materials Life Soc., 23, 120-127 (2011).

Google Scholar

[5] A. Kuwabara, S. Kuroda, H. Kubota: Plasma Sources Sci. Technol., 15, 328 (2006).

Google Scholar

[6] T.P. Kasih, S. Kuroda, H. Kubota: Chem. Vap. Depos., 13, 1 (2007).

Google Scholar

[7] A. Kuwabara, S. Kuroda, H. Kubota: Plasma Sci. Technol., 9, 181 (2007).

Google Scholar

[8] A. Kuwabara, S. Kuroda, H. Kubota: Plasma Chem. Plasma Process, 28, 263 (2008).

Google Scholar

[9] Information on http: /www. cresur. com.

Google Scholar

[10] V. Sharma, K. Hosoi, T. Mori, S. Kuroda, Applied Mechanics and Materilals, (2012), in press.

Google Scholar

[11] M. Moissan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L'H. Yahia: International Journal of Pharmaceutics, Vol. 226 (2001), p.1.

Google Scholar

[12] R.M. Boucher (Gut): Med. Device Diagnost. Indust., Vol. 7 (1985), p.51.

Google Scholar

[13] T. Y. Nishihara, E. Takubo, T. Kawamata, J. Koshikawa, J. Ogaki, and M. Kondo: J. Biochem., Vol. 106 (1989), p.270.

Google Scholar

[14] Scherrer, R., T. C. Beaman, and P. Gerhardt: J. Bacteriol., Vol. 108 (1971), p.868.

Google Scholar

[15] M.C. García, M . Varo, P . Martínez: Plasma Chem Plasma Process, Vol. 30 (2010) p.241.

Google Scholar

[16] Q.S. Yu, HK. Yasuda: Plasma Chem Plasma Process, Vol. 18 (1998), p.46.

Google Scholar

[17] R.M. Boucher (Gut): US Patent 4, 207, 286 (1980).

Google Scholar

[18] M.V. Bhat, Y.N. Benjamin: Text. Res. J., Vol. 69 ( 1999), p.39.

Google Scholar

[19] P. Setlow, in: Bacterial Stress Responses, edited by G. Storz, R. Hengge-Aronis, p.217–230, American Society of Microbiology, Washington DC (2000).

Google Scholar

[20] D. R. Massaro, E. Blaisten-Barojas: Computational and Theoretical Chemistry, Vol. 977 (2011), p.148.

Google Scholar