3D Geometric Reconstruction of Coronary Stented Artery

Article Preview

Abstract:

Coronary artery disease is a narrowing of lumen in the coronary artery usually resulting in permanent heart muscle damage or heart attack. Intravascular stents are tubular structures placed into stenotic artery to expand the inside passage and improve blood flow. The mechanical factors affect the restenosis after stenting and image-based simulation has become a popular tool for acquiring information. The study aims to provide physicians with a feasible method for 3D entity reconstruction of coronary stented artery. The coronary artery images derived from patient before and after stenting were processed by Mimics for image segmentation and 3D reconstruction. The coronary blood and wall were constructed, as well as the stented artery model. The model can be used for hemodynamic and fluid structure interaction simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

504-510

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Lloyd-Jones, R. Adams, M. Carnethon, G.D. Simone G, T. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, et al. 2009. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. Vol. 119 (2009).

DOI: 10.1161/circulationaha.108.191261

Google Scholar

[2] P.W. Serruys, P. de Jaegere, F. Kiemeneij, et al.: A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Eng J Med, Vol. 331 (1994), pp.489-495.

DOI: 10.1056/nejm199408253310801

Google Scholar

[3] C.T. Dotter, Transluminally-placed coil spring end arterial tube grafts, long-term patency in canine popliteal artery. Investigative Radiology, Vol. 4 (1969), pp.329-332.

DOI: 10.1097/00004424-196909000-00008

Google Scholar

[4] E.R. Edelman, C. Rogers: Pathobiologic responses to stenting. Am J Cardiol 1998, Vol. 81 (1998), p. 4E-6E.

Google Scholar

[5] N. Duraiswamy, R.T. Schoephoerster, M.R. Moreno, J.E. Moore: Stented artery flow patterns and their effects on the artery wall. Ann Rev Fluid Mech, Vol. 39 (2007), pp.357-382.

DOI: 10.1146/annurev.fluid.39.050905.110300

Google Scholar

[6] C. Rogers, E.R. Edelman: Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, Vol. 91 (1995), pp.2995-3001.

DOI: 10.1161/01.cir.91.12.2995

Google Scholar

[7] F. Auricchio, M. Di Loreto, E. Sacco: Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput Methods Biomech Biomed Engin, Vol. 4 (2001), pp.249-263.

DOI: 10.1080/10255840108908007

Google Scholar

[8] F. Migliavacca, L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, G. Dubini: Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol Vol. 2 (2004).

DOI: 10.1007/s10237-004-0039-6

Google Scholar

[9] C. Lally, F. Dolan, P.J. Prendergast: Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech, Vol. 38 (2005), pp.1574-1581.

DOI: 10.1016/j.jbiomech.2004.07.022

Google Scholar

[10] D.K. Liang, D.Z. Yang, M. Qi, W.Q. Wang: Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int J Cardiol, Vol. 104 (2005), pp.314-318.

DOI: 10.1016/j.ijcard.2004.12.033

Google Scholar

[11] J. Bedoya, C.A. Meyer, L.H. Timmins, M.R. Moreno, J.E. Moore: Effects of stent design parameters on normal artery wall mechanics. J Biomech Eng, Vol. 128 (2006), pp.757-765.

DOI: 10.1115/1.2246236

Google Scholar

[12] G. Holzapfel, M. Stadler, C. Schulze-Bauer: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng. Vol. 30 (2002), p.753–767.

DOI: 10.1114/1.1492812

Google Scholar

[13] D. Kiousis, T. Gasser, G. Holzapfel: A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng. Vol. 35 (2007), p.1857–1869.

DOI: 10.1007/s10439-007-9357-z

Google Scholar

[14] F. Gijsen, F. Migliavacca, S. Schievano, el. al. Simulation of stent deployment in a realistic human coronary artery. BioMed Eng OnLine. Vol. 7 (2008), 23.

DOI: 10.1186/1475-925x-7-23

Google Scholar

[15] C.K. Chang, C.P. Huded, B.W. Nolan, R.J. Powell: Prevalence and clinical significance of stent fracture and deformation following carotid artery stenting. J Vasc Surg. Vol. 54(2001), pp.6856-90.

DOI: 10.1016/j.jvs.2011.03.257

Google Scholar

[16] T. Tsunoda, H. Hara, K. Nakajima, H. Shinji, S. Ito, R. Iijima, R. Nakajima, T. Takagi, M. Nakamura, K. Sugi. Stent deformation: an experimental study of coronary ostial stenting. Cardiovasc Revasc Med. Vol. 10 (2009) pp.80-87.

DOI: 10.1016/j.carrev.2008.08.002

Google Scholar

[17] E. Babalik, M. Gulbaran, T. Gurmen, S. Ozturk. Fracture of popliteal artery stents. Circ J. Vol. 67 (2003), p.643–645.

Google Scholar

[18] J. Solis, S. Allaqaband, T. Bajwa. A case of popliteal stent fracture with pseudoaneurysm formation. Catheter Cardiovasc Interv. Vol. 67 (2006), p.319–322.

DOI: 10.1002/ccd.20600

Google Scholar

[19] D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, G. Biamino, A. Schmidt: Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. Vol. 45 (2005), p.312–315.

DOI: 10.1016/j.jacc.2004.11.026

Google Scholar