Microchip Capillary Electrophoresis Based Separation and Detection of Cysteine and Homocysteine

Article Preview

Abstract:

Cysteine and homocysteine are the biological thiols which have an important function in various biochemical processes in our body. Alterations in their level lead to various abnormalities. Therefore, we fabricated a miniaturized platform for capillary electrophoresis that could separate and detect these amino thiols electrochemically. The device was fabricated using conventional photolithography technique on the glass substrate. The microchannel was molded in polydimethylsiloxane with gold electrodes deposited on glass for separation and detection. Based on the amperometric detection, we could detect cysteine in 93 sec while homocysteine was detected in 111 sec.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-486

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Refsum, H., Ueland, P.M., Nygard, O., Vollset, S.E., 1998. Annu Rev Med 49, 31-62.

Google Scholar

[2] Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'Agostino, R.B., Wilson, P.W.F., Wolf, P.A., 2002. N Engl J Med 346, 8.

Google Scholar

[3] Frantzen, F., Faaren, A.L., Alfheim, I., Nordhei, A.K., 1998. Clin. Chem. 44, 311-316.

DOI: 10.1093/clinchem/44.2.311

Google Scholar

[4] Kusmierek, K., Glowacki, R., Bald, E., 2006. Anal Bioanal Chem. 385, 6.

Google Scholar

[5] Janaky, R., Varga, V., Hermann, A., Saransaari, P., Oja, S.S., 2000. Neurochem. Res. 25, 1397–1405.

Google Scholar

[6] Shahrokhian, S., 2001. Anal. Chem. 73, 5972–5978.

Google Scholar

[7] Steegers-Theunissen, R.P.M., Boers, G.H.J., Trijbels, F.J.M., Eskes, T.K.A.B., 1991. N Engl J Med. 324, 199-200.

Google Scholar

[8] Ueland, P.M., Vollset, S.E., 2004. Clin Chem. 50, 1293-1295.

Google Scholar

[9] Chwatko, G., Bald, E., 2000. Talanta. 52, 509–515.

Google Scholar

[10] Tanaka, F., Mase, N., Barbas, C.F., 2004. Chem. Commun., 1762–1763.

Google Scholar

[11] Wang, W., Rusin, O., Xu, X., Kim, K.K., Escobedo, J.O., Fakayode, S.O., Fletcher, K.A., Lowry, M., Schowalter, C.M., Lawrence, C.M., Fronczek, F.R., Warner, I.M., Strongin, R.M., 2005. J. Am. Chem. Soc. 127, 15949–15958.

DOI: 10.1021/ja054962n

Google Scholar

[12] Chen, X., Xia, B., He, P., 1990. J. Electroanal. Chem. Interfacial Electrochem. 281, 185-198.

Google Scholar

[13] Tang, X., Liu, Y., Hou, H., You, T., 2010. Talanta. 80, 2182–2186.

Google Scholar

[14] Perez, E.F., Kubota, L.T., Tanaka, A.A., Neto, G.D.O., 1998. Electrochim. Acta. 43, 1665–1673.

Google Scholar

[15] Jang, Y.C., Jha, S.K., Chand, R., Islam, K., Kim, Y.S., 2011. Electrophoresis. 32, 913-919.

Google Scholar