Real-Time Investigation of Engineered Nanomaterials Cytotoxicity in Living Alveolar Epithelia with Hopping Probe Ion Conductance Microscopy

Article Preview

Abstract:

Widely used engineered nanomaterials (NMs) display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential cytotoxicity. There is a continuing need for real-time imaging techniques capable of studying the interactions between NMs and living alveolar epithelial cells under physiological conditions. A new developed noninvasive HPICM is designed for continuous high-resolution topographic imaging of living cells, which makes it an ideal tool to study NMs cytotoxicity in living alveolar epithelia by performing reliable repetitive scanning. In this review, we concisely introduced the operation principle of HPICM and its applications to real-time investigation of engineered NMs cytotoxicity in living alveolar epithelia. Published results demonstrate that non-contact HPICM combined with patch-clamp has the potential to become a powerful microscopy for real-time studies of NM-cell interactions under physiological conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-28

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F. Service, Nanotoxicology. Nanotechnology grows up, Science. 304(5678) (2004) 1732-1734.

DOI: 10.1126/science.304.5678.1732

Google Scholar

[2] A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel, Science. 311(5761) (2006) 622-627.

DOI: 10.1126/science.1114397

Google Scholar

[3] G. Oberdörster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology, J Intern Med. 267(1) (2010) 89-105.

Google Scholar

[4] D.B. Warheit, What is currently known about the health risks related to carbon nanotube exposures? Carbon. 44 (2006) 1064-1069.

DOI: 10.1016/j.carbon.2005.10.013

Google Scholar

[5] M. Geiser, W.G. Kreyling, Deposition and biokinetics of inhaled nanoparticles, Particle and Fibre Toxicology. 7 (2010) 2-17.

DOI: 10.1186/1743-8977-7-2

Google Scholar

[6] R.A. Yokel, R.C. MacPhail, Engineered nanomaterials: Exposures, hazards, and risk prevention, J. Occup. Med. Toxicol. 6 (2011) 7.

DOI: 10.1186/1745-6673-6-7

Google Scholar

[7] C. Mühlfeld, B. Rothen-Rutishauser, F. Blank, D. Vanhecke, M. Ochs, P. Gehr, Interactions of nanoparticles with pulmonary structures and cellular responses, Am J Physiol Lung Cell Mol Physiol. 294(5) (2008) L817-L829.

DOI: 10.1152/ajplung.00442.2007

Google Scholar

[8] H.M. Mansour, Y.S. Rhee, X. Wu, Nanomedicine in pulmonary delivery, International journal of nanomedicine. 4 (2009) 299-319.

Google Scholar

[9] J.M. Worle-Knirsch, K. Pulskamp, H.F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays, Nano Lett. 6 (2006) 1261-1268.

DOI: 10.1021/nl060177c

Google Scholar

[10] N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line, Toxicol Appl Pharmacol. 234 (2009) 222-235.

DOI: 10.1016/j.taap.2008.09.030

Google Scholar

[11] A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: Limitations and challenges, Eur J Pharm Biopharm. 72 (2009) 370-377.

DOI: 10.1016/j.ejpb.2008.08.009

Google Scholar

[12] R. Tantra, A. Knight, Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques, Nanotoxicology. 5 (2011) 381-392.

DOI: 10.3109/17435390.2010.512987

Google Scholar

[13] D.P. Allison, N.P. Mortensen, C.J. Sullivan, M.J. Doktycz, Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (2010) 618−634.

DOI: 10.1002/wnan.104

Google Scholar

[14] P.K. Hansma, B. Drake, O. Marti, S.A. Gould, C.B. Prater, The scanning ion-conductance microscope, Science. 243 (1989) 641-643.

DOI: 10.1126/science.2464851

Google Scholar

[15] Y.E. Korchev, C.L. Bashford, M. Milovanovic, I. Vodyanoy, M.J. Lab, Scanning ion conductance microscopy of living cells, Biophys J. 73 (1997) 653-658.

DOI: 10.1016/s0006-3495(97)78100-1

Google Scholar

[16] Y. Zhang, J. Gorelik, D. Sanchez, A. Shevchuk, M. Lab, I. Vodyanoy, D. Klenerman, C. Edwards, Y. Korchev, Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity, Kidney Int. 68 (2005).

DOI: 10.1111/j.1523-1755.2005.00499.x

Google Scholar

[17] J. Rheinlaender, N.A. Geisse, R. Proksch, T.E. Schäffer, Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging, Langmuir. 27 (2011) 697–704.

DOI: 10.1021/la103275y

Google Scholar

[18] P. Novak, C. Li, A.I. Shevchuk, R. Stepanyan, M. Caldwell, S. Hughes, T.G. Smart, J. Gorelik, V.P. Ostanin, M.J. Lab, G.W. Moss, G.I. Frolenkov, D. Klenerman, Y.E. Korchev, Nanoscale live-cell imaging using hopping probe ion conductance microscopy, Nature Methods. 6 (2009).

DOI: 10.1038/nmeth1209-935a

Google Scholar

[19] X. Yang, X. Liu, X. Zhang, H. Lu, J. Zhang, Y. Zhang, Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined Hopping Probe Ion Conductance Microscopy and patch-clamp technique, Ultramicroscopy. 111 (8) (2011).

DOI: 10.1016/j.ultramic.2011.05.008

Google Scholar

[20] A.I. Shevchuk, P. Novak, Y. Takahashi, R. Clarke, M. Miragoli, B. Babakinejad, J. Gorelik, Y.E. Korchev, D. Klenerman, Realizing the biological and biomedical potential of nanoscale imaging using a pipette probe, Nanomedicine (Lond). 6(3) (2011).

DOI: 10.2217/nnm.10.154

Google Scholar

[21] X. Yang, X. Liu, H. Lu, X. Zhang, L. Ma, R. Gao, Y. Zhang, Real-Time Investigation of Acute Toxicity of ZnO Nanoparticles on Human Lung Epithelia with Hopping Probe Ion Conductance Microscopy, Chem Res Toxicol. 25(2) (2012) 297–304.

DOI: 10.1021/tx2004823

Google Scholar

[22] P. Ruenraroengsak, P. Novak, D. Berhanu, A.J. Thorley, E. Valsami-Jones, J. Gorelik, Y.E. Korchev, T.D. Tetley, Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles, Nanotoxicology. 6 (2012).

DOI: 10.3109/17435390.2011.558643

Google Scholar