Real-Time Investigation of Engineered Nanomaterials Cytotoxicity in Living Alveolar Epithelia with Hopping Probe Ion Conductance Microscopy

Abstract:

Article Preview

Widely used engineered nanomaterials (NMs) display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential cytotoxicity. There is a continuing need for real-time imaging techniques capable of studying the interactions between NMs and living alveolar epithelial cells under physiological conditions. A new developed noninvasive HPICM is designed for continuous high-resolution topographic imaging of living cells, which makes it an ideal tool to study NMs cytotoxicity in living alveolar epithelia by performing reliable repetitive scanning. In this review, we concisely introduced the operation principle of HPICM and its applications to real-time investigation of engineered NMs cytotoxicity in living alveolar epithelia. Published results demonstrate that non-contact HPICM combined with patch-clamp has the potential to become a powerful microscopy for real-time studies of NM-cell interactions under physiological conditions.

Info:

Periodical:

Edited by:

Tan Jin

Pages:

24-28

Citation:

X. Liu et al., "Real-Time Investigation of Engineered Nanomaterials Cytotoxicity in Living Alveolar Epithelia with Hopping Probe Ion Conductance Microscopy", Advanced Materials Research, Vol. 651, pp. 24-28, 2013

Online since:

January 2013

Export:

Price:

$38.00

[1] R.F. Service, Nanotoxicology. Nanotechnology grows up, Science. 304(5678) (2004) 1732-1734.

DOI: https://doi.org/10.1126/science.304.5678.1732

[2] A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel, Science. 311(5761) (2006) 622-627.

DOI: https://doi.org/10.1126/science.1114397

[3] G. Oberdörster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology, J Intern Med. 267(1) (2010) 89-105.

[4] D.B. Warheit, What is currently known about the health risks related to carbon nanotube exposures? Carbon. 44 (2006) 1064-1069.

DOI: https://doi.org/10.1016/j.carbon.2005.10.013

[5] M. Geiser, W.G. Kreyling, Deposition and biokinetics of inhaled nanoparticles, Particle and Fibre Toxicology. 7 (2010) 2-17.

DOI: https://doi.org/10.1186/1743-8977-7-2

[6] R.A. Yokel, R.C. MacPhail, Engineered nanomaterials: Exposures, hazards, and risk prevention, J. Occup. Med. Toxicol. 6 (2011) 7.

DOI: https://doi.org/10.1186/1745-6673-6-7

[7] C. Mühlfeld, B. Rothen-Rutishauser, F. Blank, D. Vanhecke, M. Ochs, P. Gehr, Interactions of nanoparticles with pulmonary structures and cellular responses, Am J Physiol Lung Cell Mol Physiol. 294(5) (2008) L817-L829.

DOI: https://doi.org/10.1152/ajplung.00442.2007

[8] H.M. Mansour, Y.S. Rhee, X. Wu, Nanomedicine in pulmonary delivery, International journal of nanomedicine. 4 (2009) 299-319.

[9] J.M. Worle-Knirsch, K. Pulskamp, H.F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays, Nano Lett. 6 (2006) 1261-1268.

DOI: https://doi.org/10.1021/nl060177c

[10] N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line, Toxicol Appl Pharmacol. 234 (2009) 222-235.

DOI: https://doi.org/10.1016/j.taap.2008.09.030

[11] A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: Limitations and challenges, Eur J Pharm Biopharm. 72 (2009) 370-377.

DOI: https://doi.org/10.1016/j.ejpb.2008.08.009

[12] R. Tantra, A. Knight, Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques, Nanotoxicology. 5 (2011) 381-392.

DOI: https://doi.org/10.3109/17435390.2010.512987

[13] D.P. Allison, N.P. Mortensen, C.J. Sullivan, M.J. Doktycz, Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (2010) 618−634.

DOI: https://doi.org/10.1002/wnan.104

[14] P.K. Hansma, B. Drake, O. Marti, S.A. Gould, C.B. Prater, The scanning ion-conductance microscope, Science. 243 (1989) 641-643.

DOI: https://doi.org/10.1126/science.2464851

[15] Y.E. Korchev, C.L. Bashford, M. Milovanovic, I. Vodyanoy, M.J. Lab, Scanning ion conductance microscopy of living cells, Biophys J. 73 (1997) 653-658.

DOI: https://doi.org/10.1016/s0006-3495(97)78100-1

[16] Y. Zhang, J. Gorelik, D. Sanchez, A. Shevchuk, M. Lab, I. Vodyanoy, D. Klenerman, C. Edwards, Y. Korchev, Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity, Kidney Int. 68 (2005).

DOI: https://doi.org/10.1111/j.1523-1755.2005.00499.x

[17] J. Rheinlaender, N.A. Geisse, R. Proksch, T.E. Schäffer, Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging, Langmuir. 27 (2011) 697–704.

DOI: https://doi.org/10.1021/la103275y

[18] P. Novak, C. Li, A.I. Shevchuk, R. Stepanyan, M. Caldwell, S. Hughes, T.G. Smart, J. Gorelik, V.P. Ostanin, M.J. Lab, G.W. Moss, G.I. Frolenkov, D. Klenerman, Y.E. Korchev, Nanoscale live-cell imaging using hopping probe ion conductance microscopy, Nature Methods. 6 (2009).

DOI: https://doi.org/10.1038/nmeth1209-935a

[19] X. Yang, X. Liu, X. Zhang, H. Lu, J. Zhang, Y. Zhang, Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined Hopping Probe Ion Conductance Microscopy and patch-clamp technique, Ultramicroscopy. 111 (8) (2011).

DOI: https://doi.org/10.1016/j.ultramic.2011.05.008

[20] A.I. Shevchuk, P. Novak, Y. Takahashi, R. Clarke, M. Miragoli, B. Babakinejad, J. Gorelik, Y.E. Korchev, D. Klenerman, Realizing the biological and biomedical potential of nanoscale imaging using a pipette probe, Nanomedicine (Lond). 6(3) (2011).

DOI: https://doi.org/10.2217/nnm.10.154

[21] X. Yang, X. Liu, H. Lu, X. Zhang, L. Ma, R. Gao, Y. Zhang, Real-Time Investigation of Acute Toxicity of ZnO Nanoparticles on Human Lung Epithelia with Hopping Probe Ion Conductance Microscopy, Chem Res Toxicol. 25(2) (2012) 297–304.

DOI: https://doi.org/10.1021/tx2004823

[22] P. Ruenraroengsak, P. Novak, D. Berhanu, A.J. Thorley, E. Valsami-Jones, J. Gorelik, Y.E. Korchev, T.D. Tetley, Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles, Nanotoxicology. 6 (2012).

DOI: https://doi.org/10.3109/17435390.2011.558643