Electrical Properties of Pt Nanowires Deposited with Focused Ion Beam

Article Preview

Abstract:

Focused ion beam (FIB) is an important tool in microfabrication technique. In recent years, FIB was used to fabricate the nanodevices. In this paper, Pt nanowires with differ radius were deposited with FIB. The component and resistance of nanowires were investigated. Results indicate that the component of Pt naowires is mainly Pt, C and Ga. The high content of Pt in nanowires is 49.36%. The resistivity of Pt nanowire is from 545.74µΩ•cm to 5.16µΩ•cm. Pt nanowires with the diameter up to 60nm take on characteristic of metal; others take on that of semiconductor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

339-343

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] John Meingaills, J. Vac. Sci. Technol. B, 1987, 5(2): 469-495.

Google Scholar

[2] Ehrenfried Zschech, Eckhard Langer, Hans Juergen Engelmann, et al, Materials Science in Semiconductor Processing, 2003, (5): 4572464.

Google Scholar

[3] R.M. Langford, A.K. Perford-Long, M. Rommeswinkle, et al, Mater. Sci. Technol. 2002, 18: 743.

Google Scholar

[4] K. Gamo, N. Takakura, N. Samoto, et al, Jpn.J. Appl. Phys, 1984, 23: L293.

Google Scholar

[5] Jiang Suhua, Tang Ling, Wang Jia ji, Chinese journal of semiconductors, 2004, 25(11): 1458-1463(in Chinese).

Google Scholar

[6] Park Y K, N agai T, TakaiM, et al. Nucl Instum Methods Phys Res B, 1999, 148: 25.

Google Scholar

[7] ShoheiN akahara, Surfaceand Coatings Technology, 2003, (1692170): 7212727.

Google Scholar

[8] L. A. Giannuzzi, F. A. Stevie, Micron, 1999, (30): 1972204.

Google Scholar

[9] M. W. Phaneuf, Micron, 1999, (30): 2772288.

Google Scholar

[10] T. Tao, J.S. Ro, J. Melngailis, et al, J. Vac. Sci. Technol. B 1990, 8: 1826.

Google Scholar

[11] T.W. Ebbesen, H.J. Lezec, H. Hiura, et al, Nature, 1996, 382: 54.

Google Scholar

[12] Stephen B Cronin, Yu-Ming Lin, Oded Rabin, et al, Nanotechnology 2002, 13, 653–658.

Google Scholar

[13] Yong-Jun Ma, Feng Zhou, Li Lu, et al, Nanotechnology, 2005, 16: 746-749.

Google Scholar

[14] Francisco Hernandez-ramirez, Albert Tarancon, Olgacasals, et al, Nanotechnology 2006, 17: 5577-5583.

Google Scholar

[15] Yong-Jun Ma, Feng Zhou, Li Lu, et al, Solid State Communications, 2004, 130: 313–316.

Google Scholar

[16] Yunze Long, Zhaojia Chen, Yongjun Ma, et al, Appl. Phys. Lett. 2004, 84: 2205.

Google Scholar

[17] Yunze Long, Zhaojia Chen, Nanlin Wang, et al, Appl. Phys. Lett. 2003, 83: 1863.

Google Scholar

[18] M.S.H. Go, Focused Ion Beam fabrication of junctions in the Charge Density Wave Conductor NbSe3. TU-Delft, (2001).

Google Scholar

[19] J. -F. Lin, J.P. Birda, L. Rotkinab, Physica E 2003, 19: 112 – 116.

Google Scholar

[20] J. -F. Lin, J.P. Bird, L. Rotkina, et al, Appl. Phys. Lett. 2003, 82: 802.

Google Scholar

[21] N.F. Mott and E.A. David, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, (1979).

Google Scholar

[22] B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1979).

Google Scholar

[23] J.M. Luttinger. J. Math. Phys. 1963, 4: 1154.

Google Scholar

[24] R. Egger, A. Bachtold, M.S. Fuhrer, et al, Lecture Notes in Physics, 2001, 579: 125-146.

Google Scholar

[25] Latha Venkataraman, Charles M. Lieber, Phys. Rev. Lett. 1999, 83: 5334–5337.

Google Scholar

[26] S.V. Zeitsev-Zotov, Yu.A. Kumzerov, Yu.A. Firsov, P. Monceau, J. Phys.: Condens. Matter 12, L303 (2000).

DOI: 10.1088/0953-8984/12/20/101

Google Scholar