Structural Stability and Electronic Properties of Fe-Doped B13C2: First-Principles Investigation

Article Preview

Abstract:

Structure stability and electronic properties of Fe-doped boron carbides (B13C2) were studied using the first principle calculations based on plane wave pseudo-potential theory. The calculated results showed that the Fe-doped boron carbide representative stable structural is Fe substituting C atom on the end of chain C-B-C. The band structure and density of states (DOS) indicated that the coexistence of [C-B-Fe] ε+-[B11C] ε- structural unit made electrical conductivity increased. As the covalent bond of Fe-B was weaker than those of B-B and B-C, the thermal conductivity decreased for Fe-doped B13C2, thermoelectric property of Fe-doped boron carbides has been improved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

344-347

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Werheit and J. Phys.: Condens. Matter Vol. 18 (2006), p.10655–10662.

Google Scholar

[2] R. Schmechel, H. Werheit, T. U. Kampen and W. Monch: J. Solid State Chem. Vol. 177 (2004), p.566–8.

Google Scholar

[3] Y. Feng, G. T. Seidler, J. O. Cross, A. T. Macrander and J. J. Rehr: Phys. Rev. B Vol. 69(2004), p.125402.

Google Scholar

[4] C. H. Liu and C. Huang: J. of Mat. Sci. Vol. 35 (2000), pp.387-390.

Google Scholar

[5] C. Wood: AIP Conf. Proc. Vol. 140 (1985), p.206–15.

Google Scholar

[6] T. L. Aselage, D. Emin and S. S. McCready: Phys. Rev. B Vol. 64 (2001), p.054302.

Google Scholar

[7] M. Francesco, V. Nathalie and J. P. Chris: Phys. Rev. Lett. Vol. 87 (2001), pp.085506-3.

Google Scholar

[8] J. P. Perdew, K. Burke and M. Emzerhof Phys. Rev. Lett. Vol. 77 (1996) , pp.3865-3868.

Google Scholar

[9] V. Nathalie, S. Jelena and B. J. Emmanuel: Phys.: Conf. Ser. Vol. 176 (2009), p.012002.

Google Scholar

[10] L. Yu, H. Q., Ru, Y. L. Jiang, L. Zuo and X. X. XueMin. Met. s & Mat. Soc. Vol. 1 (2008), pp.189-193.

Google Scholar

[11] B. Xiao, J. D. Xing , S. F. Ding and W. Su : Physica B Vol. 403 (2008), pp.1723-1730.

Google Scholar

[12] L. Yu, S. K. Lu, Y. L. Jiang, B. Xiao, X. Tang and H. Q. Ru: Procedia Engineering Vol. 12 (2011), pp.229-235.

Google Scholar

[13] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne , E. V. Akhmatskaya and R. H. Nobes : Int. J. Quantum Chem. Vol. 77 (2000), p.895.

DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c

Google Scholar

[14] M. Calandra, N. Vast and F. Mauri: Phys. Rev. B Vol. 69 (2004), p.224505.

Google Scholar

[15] M. Marques, M. Lu¨ders, N. Lathiotakis, G. Profeta, A. Floris, G. Profeta, L. Fast, A. Continenza, E. Gross and S. Massida: Phys. Rev. B Vol. 72 (2005), p.024546.

DOI: 10.1103/physrevb.72.024546

Google Scholar

[16] J. Saal, S. Shang and Z. K. Liu: Appl. Phys. Lett. Vol. 91 (2007), p.231915.

Google Scholar

[17] G. Will, K. H. Kossobutzki : J. of the Less-Com. Met., Vol. 47 (1976), pp.43-48.

Google Scholar

[18] B. Xiao, J. Feng, J. C. Chen and L. Yu : Chem. Phy. Let. Vol. 448 (2007), pp.35-40.

Google Scholar

[19] I. Kuryliszyn-Kudelska, R. Diduszko, E. Tymicki, W. Dobrowolski and K. Grasza: phys. stat. sol. (b) Vol. 244(5) , (2007), p.1743 – 1746.

DOI: 10.1002/pssb.200675148

Google Scholar