[1]
Jacoby, M., RECHARGEABLE METAL-AIR BATTERIES. Chemical & Engineering News 2010, 88 (47), 29-31.
Google Scholar
[2]
Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56 (1–2), 9-35.
DOI: 10.1016/j.apcatb.2004.06.021
Google Scholar
[3]
Lu, Y.-C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y., Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries. Journal of the American Chemical Society 2010, 132 (35), 12170-12171.
DOI: 10.1021/ja1036572
Google Scholar
[4]
Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy & Environmental Science 2011, 4 (3), 760-764.
DOI: 10.1039/c0ee00326c
Google Scholar
[5]
Hu, Y.-S.; Demir-Cakan, R.; Titirici, M.-M.; Müller, J.-O.; Schlögl, R.; Antonietti, M.; Maier, J., Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angewandte Chemie International Edition 2008, 47 (9), 1645-1649.
DOI: 10.1002/anie.200704287
Google Scholar
[6]
Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.-P., Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Advanced Energy Materials 2012, n/a-n/a.
DOI: 10.1002/aenm.201200038
Google Scholar
[7]
Winther-Jensen, B.; MacFarlane, D. R., New generation, metal-free electrocatalysts for fuel cells, solar cells and water splitting. Energy & Environmental Science 2011, 4 (8), 2790-2798.
DOI: 10.1039/c0ee00652a
Google Scholar
[8]
(a) Li, G.-C.; Li, G.-R.; Ye, S.-H.; Gao, X.-P., A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries. Advanced Energy Materials 2012, n/a-n/a; (b) Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P., Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt–Cu–Co Nanoparticles. Angewandte Chemie International Edition 2007, 46 (47), 8988-8991.
DOI: 10.1002/anie.200703331
Google Scholar
[9]
McCrory, C. C. L.; Uyeda, C.; Peters, J. C., Electrocatalytic Hydrogen Evolution in Acidic Water with Molecular Cobalt Tetraazamacrocycles. Journal of the American Chemical Society 2012, 134 (6), 3164-3170.
DOI: 10.1021/ja210661k
Google Scholar
[10]
Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J., Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 2011, 3 (1), 79-84.
DOI: 10.1038/nchem.931
Google Scholar
[11]
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Shao-Horn, Y., Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode. Journal of the Electrochemical Society 2010, 157 (8), B1263-B1268.
DOI: 10.1149/1.3456630
Google Scholar
[12]
Zhang, J., PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Berlin ; London : Springer: 2008.
Google Scholar