Shape-Controlled Synthesis and Pattern Recognition of Dendritic Co3O4 Superstructures

Article Preview

Abstract:

In this paper, the optimal projection recognition (OPR) developed in our lab has been used to find the regularities of forming dendritic Co3O4 superstructures. The criteria for predicting dendritic Co3O4 superstructures can be obtained by using OPR method among different kinds of pattern recognition diagrams. The new samples predicted to be dendritic Co3O4 superstructures were designed by using the inverse projection based on the OPR method. The predicted results agreed well with our experiments. Therefore, the work presented is very useful not only inthe shape-controlled synthesis of dendritic Co3O4 superstructures but also in materials design of other nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

352-355

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. J. Murphy, Science, Vol. 298 (2002), p.2139.

Google Scholar

[2] X. Wang, T.Y. Zhai, Y. Bando, J. Mater. Chem., 2012, DOI: 10. 1039/c2jm33940d, in press.

Google Scholar

[3] B. Guo, C.S. Li, and Z.Y. Yuan, J. Phys. Chem. C, Vol. 114 (2010), p.12805.

Google Scholar

[4] Y.H. Teng,Y. Kusano, M. Haruta, and Y. Shimakawa, Catal. Sci. Technol, Vol. 1 (2011), p.920.

Google Scholar

[5] P. Zhang, C. L., Z.J. Lu, C.J. Cai, S.J. Bao, Chinese J. Inorg. Chem., Vol. 28 (2012), p.1435.

Google Scholar

[6] T. He, D.R. Chen, X.L. Jiao, Y.L. Wang, and Y.Z. Duan, Chem. Mater., Vol. 17(2005), p.4023.

Google Scholar

[7] Y. Ren, Z. Ma, and P. G. Bruce, Chem. Soc. Rev., Vol. 41(2012), p.4909.

Google Scholar

[8] J.N.L. Von, and A. David, Angew. Chem., Vol. 118 (2006), p.3069.

Google Scholar

[9] Y.M. Choi, M.C. Lin, M.L. Liu, J. Power Sources, Vol. 195 (2010), p.1441.

Google Scholar

[10] J. Lu, W. C. Lu, Physical properties and applications of advanced materials, 2011, Shanghai.

Google Scholar

[11] T. Le, V.C. Epa, F. R. Burden, and D. A. Winkler, Chem. Rev., Vol. 112 (2012), p.2889.

Google Scholar

[12] L.M. Zhang, X. Zhao, W.J. Ma, M.L. Wu, N. Qian, W.C. Lu, submitted to CrystEngComm.

Google Scholar

[13] H. Pang, F. Gao, Q. C hen, R.M. Liu, and Q.Y. Lu, Dalton Trans., Vol. 41 (2012), p.5862.

Google Scholar

[14] L. Wang, Y. Yamauchi, J. Am. Chem. Soc., Vol. 131 (2009), p.9152.

Google Scholar

[15] Y.J. Song, A. Michael, S.R. Hickner, R.M. Challa, Dorin, Nano Lett., Vol. 9 (2009), p.1534.

Google Scholar

[16] T. Huang, F. Meng, L.M. Qi, Langmuir, Vol. 26 (2010), p.7582.

Google Scholar

[17] S.K. Meher, and G. R. Rao, J. Phys. Chem. C , Vol. 115 (2011), p.25543.

Google Scholar

[18] L.H. Hu, Q. Peng, and Y.D. Li, J. Am. Chem. Soc., Vol. 130 (2008), p.16136.

Google Scholar

[19] W.Y. Li, L.N. Xu, and J. Chen, Adv. Funct. Mater., Vol. 15 (2005), p.851.

Google Scholar

[20] W.C. Lu, X. Su, J.X. Feng, N.Y. Chen. J. App. Sci., Vol. 18 (2000), p.267.

Google Scholar

[21] N.Y. Chen, W.C. Lu, R.L. Chen, P. Qin, Chemom. Intell. Lab. Syst., Vol. 45 (1999), p.329.

Google Scholar