Novel Preparation Method and Luminescent Properties of Eu3+ Doped CdWO4 Nanorod

Article Preview

Abstract:

Eu3+ doped CdWO4 nanorods, with nearly uniform nanoscale was synthesized via a novel simple hydrothermal method easy for commercial run at 160 °C, of which the average dimensions are about 250, 50 and 20 nm in length, width and height respectively from the result of transmission electron microscopy (TEM). Powder X-ray diffraction (PXRD) pattern shows the product is pure wolframite structure. Different from undoped products showed brilliant blue-green irradiation and block crystals with multi-emission bands in red light range, the Eu doped nanorods give preferred strong 5D07F2 transition and are excellent red phosphor with high color purity supported by the photoluminescent (PL) measurements and ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). This suggests that a combination of the Eu3+ doped and undoped products are potential to realize the white lighting LED with blue, green and red components.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

664-668

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. C. Pullar, S. Farrah and N. M. Alford: Journal of the Eu3+ropean Ceramic Society, Vol. 27 (2007), p.1059.

Google Scholar

[2] E. Cavalli, A. Belletti and M. G. Brik: Journal of Physics and Chemistry of Solids, Vol. 69 (2008), p.29.

Google Scholar

[3] T. Ejima, T. Banse, H. Takatsuka, Y. Kondo, M. Ishino, N. Kimura, M. Watanabe and I. Matsubara: Journal of Luminescence, Vol. 119–120 (2006), p.59.

DOI: 10.1016/j.jlumin.2005.12.012

Google Scholar

[4] S. M. Montemayor and A. F. Fuentes: Ceramics International, Vol. 30 (2004), p.393.

Google Scholar

[5] Z. Shan, Y. Wang, H. Ding and F. Huang: Journal of Molecular Catalysis A: Chemical, Vol. 302 (2009), p.54.

Google Scholar

[6] Y. Ling, L. Zhou, L. Tan, Y. Wang and C. Yu: Crystengcomm, Vol. 12 (2010), p.3019.

Google Scholar

[7] H. W. Liao, Y. F. Wang, X. -M. Liu, Y. -D. Li and Y. -T. Qian: Chemistry of Materials, Vol. 12 (2000), p.2819.

Google Scholar

[8] W. Tong, L. Li, W. Hu, T. Yan and G. Li: The Journal of Physical Chemistry C, Vol. 114 (2010), p.1512.

Google Scholar

[9] D. Ye, D. Li, W. Zhang, M. Sun, Y. Hu, Y. Zhang and X. Fu: The Journal of Physical Chemistry C, Vol. 112 (2008), p.17351.

Google Scholar

[10] C. A. Kodaira, H. F. Brito, O. L. Malta and O. A. Serra: Journal of Luminescence, Vol. 101 (2003), p.11.

Google Scholar

[11] S. i. Kubota, Y. Suzuyama, H. Yamane and M. Shimada: Journal of Alloys and Compounds, Vol. 268 (1998), p.66.

Google Scholar

[12] V. Jubera, J. P. Chaminade, A. Garcia, F. Guillen and C. Fouassier: Journal of Luminescence, Vol. 101 (2003), p.1.

Google Scholar