The Growth and Optical Properties of CdS Nanorods via Solvent-Thermal Route

Article Preview

Abstract:

CdS nanocrystals were synthesized by a solvent-thermal method in ethylenediamine at different temperature and time. The samples were investigated by XRD, TEM, Uv-vis absorption and PL spectroscopy. The solvent-thermal temperature at 200 °C is an optimal reaction temperature for preparing CdS nanorods with high crystallinity. The PL spectra exhibited two typical emissions: near band edge emission (centered at ~520nm) and defect emission (a broad peak in the range of 550-750nm). The defect emission decreased gradually and disappeared finally with the reaction time increasing from 1 to 12h, but the near band edge emission increased. This revealed that the quality of the CdS samples improved by degrees as the reaction time increased. The growth of single-crystalline CdS nanorods followed three steps; (a) CdS nuclei formed by reacting Cadmium chloride dihydrate and thiourea in ethylenediamine at 200 °C, (b) CdS nuclei grew into thin nanowhiskers after 1h reaction, (c) the growth of CdS nanorods based on nanowhiskers via a Ostwald ripening process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

647-653

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 421 (2003) 241.

Google Scholar

[2] A. B. Greytak, C. J. Barrelet, Y. Li, C. M. Lieber, Appl. Phys. Lett. 87 (2005) 151103.

Google Scholar

[3] J. J. Miao, T. Ren, L. Dong, J. J. Zhu, H. Y. Chen, Small 1 (2005) 802.

Google Scholar

[4] Z. Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater. 8 (2009) 648.

DOI: 10.1038/nmat2493

Google Scholar

[5] P. M. Ma, L. Dai, H. B. Huo, W. Q. Yang, G. G. Qin, P. H. Tan, C. H. Huang, J. Zheng, Appl. Phys. Lett. 89 (2006) 203120.

Google Scholar

[6] R. M. Ma, L. Dai, G. G. Qin, Nano Lett. 7 (2007) 868.

Google Scholar

[7] R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, G. G. Qin, Nano Lett.7 (2007) 3300.

Google Scholar

[8] S. P. Mondal, S. K. Ray, Appl. Phys. Lett. 94 (2009) 223119.

Google Scholar

[9] J. S. Jie, W. J. Zhang, Y. Jiang, S. T. Lee, Appl. Phys. Lett. 89 (2006) 223117.

Google Scholar

[10] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, Nano Lett. 6 (2006) 1887.

Google Scholar

[11] S. L. Xiong, B. J. Xi, Y. T. Qian, J. Phys. Chem. C 114 (2010) 14029.

Google Scholar

[12] Y. F. Lin, J. H. Song, Y. Ding, S. Y. Lu, Z. L. Wang, Adv. Mater. 9999 (2008) 1.

Google Scholar

[13] Y. F. Lin, J. H. Song, Y. Ding, S. Y. Lu, Z. L. Wang, Appl. Phys. Lett. 92 (2008) 022105.

Google Scholar

[14] T. Y. Zhai, X. S. Fang, L. Li, Yoshio Bando, D. Golberg, Nanoscale 2 (2010) 168.

Google Scholar

[15] J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian, Chem. Mater. 12 (2000) 3259.

Google Scholar

[16] J. S. Jang, U. A. Joshi, J. S. Lee, J. Phys. Chem. C 111 (2007) 13280.

Google Scholar

[17] Aaron E. Saunders, Ali Ghezelbash, Preeti Sood, and Brian A. Korgel, Langmuir 24 (2008) 9043.

Google Scholar

[18] Y. X. Li, Y. F. Hu, S. Q. Peng, G. X. Lu, S. B. Li, J. Phys. Chem. C 113 (2009) 9352.

Google Scholar

[19] W. C. Kwak, T. G. Kim, W. J. Lee, S. H. Han, Y. M. Sung, J. Phys. Chem. C 113 (2009) 1615.

Google Scholar

[20] X. L. Wang, Z. C. Feng, D. Y. Fan, F. T. Fan, C. Li, Crystal Growth & Design 10 (2010) 5312.

Google Scholar

[21] Z. H. Wang, L. Pan, L. L. Wang, H. Wang, Solid State Sciences 13 (2011) 970.

Google Scholar

[22] D. Xu, Z. P. Liu, J. B. Liang, Y. T. Qian, J. Phys. Chem. B 109 (2005) 14344.

Google Scholar

[23] Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G. E. Zhou, Chem. Mater. 10 (1998) 2301.

Google Scholar

[24] H. O. K. Kirchner, Metall. Trans. 2 (1971) 2861.

Google Scholar