Extraction of Fish Oil from the Muscle of Sturgeon Using Supercritical Fluids

Article Preview

Abstract:

This study evaluated the extraction of oil from sturgeon (Acipenser baeri) muscle using supercritical fluids. Response surface methodology (RSM) was used to identify and quantify the variables, namely extraction pressure, extraction time and CO2 flow rate on the yield of oil. Statistical analysis indicated that for all three variables, the quadratic terms and interactions between the variables had significant effects on yield (p < 0.05). Polynomial regression model predictions were in good agreement with the experimental results, with a coefficient of determination of 0.9936 for yield. Maximum yield from sturgeon muscle was 26.83% with a pressure of 315.8 bar, extraction time of 10.8 min and CO2 flow rate of 3.5 l/min, which closely matched the predicted value (26.70%). The characteristics of the fish oil extracted with the supercritical fluids were superior to those of oil obtained by other methods.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 655-657)

Pages:

1975-1981

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Reza, S., & Mehdi, Y.. Changes in TVN (Total Volatile Nitrogen) and psycrotrophic bacteria Icht in Persian sturgeon Caviar (Acipenser persicus) during processing and cold storage [J]. Journal of Applied Ichthyology, Vol.22 (2006),pp.416-418.

DOI: 10.1111/j.1439-0426.2007.00997.x

Google Scholar

[2] Ahn, J.H., Kim, Y.P., Lee, Y.M., Seo, E.M., Lee, K.W., & Kim, H.S. Optimization of microencapsulation of seed oil by response surface methodology[J].Food Chemistry, Vol.10(2008), pp.98-105.

DOI: 10.1016/j.foodchem.2007.07.067

Google Scholar

[3] Hao, S.X., Li, L.H., Yang, X.Q., Cen, J.W., Shi, H., Bo, Q., & He, J.Y. The characteristics of gelatin extracted from sturgeon (Acipenser baeri) skin using various pretreatments[J]. Food Chemistry, Vol.115 (2009), pp.124-128.

DOI: 10.1016/j.foodchem.2008.11.080

Google Scholar

[4] Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C. Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology [J]. Journal of Supercritical Fluids, Vol.48 (2009), pp.9-14.

DOI: 10.1016/j.supflu.2008.09.013

Google Scholar

[5] Létisse, M., Rozières, M., Hiol, A., Sargent, M., & Comeau, L. Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier I. Optimization of extraction conditions[J]. J. Supercrit Fluids, Vol.38 (2006), pp.27-36.

DOI: 10.1016/j.supflu.2005.11.013

Google Scholar

[6] Perretti, G., Motori, A., Bravi, E., Favati, F., Montanari, L., & Fantozzi, P. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters[J]. J.Supercrit. Fluids, Vol.40 (2007)., 349-353.

DOI: 10.1016/j.supflu.2006.07.020

Google Scholar

[7] Sahena, F., Zaidul, I.S.M., Jinap S., Jahurul M.H.A., Khatib A., & Norulaini N.A.N. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids[J]. Journal of Food Engineering, Vol.99 (2010), 63-69.

DOI: 10.1016/j.jfoodeng.2010.01.038

Google Scholar

[8] Wang, H.W., Liu, Y.Q., Wei, S.L., & Yan, Z.J. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn[J]. Food Chemistry, Vol.132(2012), 582-587.

DOI: 10.1016/j.foodchem.2011.10.075

Google Scholar

[9] Öztürk, T., Ustun, G., & Ayse Aksoy, H. Production of medium-chain triacylglycerols from corn oil: Optimization by response surface methodology[J]. Bioresource Technology, Vol.101 (2010), 7456-7461.

DOI: 10.1016/j.biortech.2010.04.096

Google Scholar

[10] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., & Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, Vol.76(2008), 965-977.

DOI: 10.1016/j.talanta.2008.05.019

Google Scholar

[11] Began, G., Goto, M., Kodama, A., & Hirose, T. Response surfaces of total oil yield of turmeric (Curcuma longa) in supercritical carbon dioxide[J]. Food Research International, Vol.33(2000), 341-345.

DOI: 10.1016/s0963-9969(00)00053-3

Google Scholar

[12] Liu, S.C., Yang, F., Zhang, C.H., Ji, H.W., Hong, P.Z., Deng, C.J. Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology[J]. Journal of Supercritical Fluids, Vol.48(2009), 9-14.

DOI: 10.1016/j.supflu.2008.09.013

Google Scholar

[13] Aidos, I., van-der-Padt, A., Boom, R. M., & Luten, J. B. Upgrading of maatjes herring byproducts: Production of crude fish oil[J]. Journal of Agriculture and Food Chemistry, Vol. 49(2001), 3697-3704.

DOI: 10.1021/jf001513s

Google Scholar

[14] Wang, H., Liu, F., Yang, L., Zu, Y.G., Wang, H., Qu, S.Z., & Zha, Y. Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage[J]. Food Chemistry, Vol.128 (2011), 93-99.

DOI: 10.1016/j.foodchem.2011.02.082

Google Scholar

[15] Rashid, U., Anwar, F., Ashraf, M., Saleem, M., Yusup, S. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production[J]. Energy Conversion and Management, Vol.52 (2011), 3034-3042.

DOI: 10.1016/j.enconman.2011.04.018

Google Scholar

[16] Liu G.M., Xu X., Hao Q.F., & Gao Y.X. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology [J]. LWT - Food Science and Technology, Vol.42 (2009), 1491-1495.

DOI: 10.1016/j.lwt.2009.04.011

Google Scholar