[1]
Yang B, Jiang YM, Shi J, et al. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus logan lour. ) fruit-A review [J]. Food Research International, 2010, 44: 1837-1842.
DOI: 10.1016/j.foodres.2010.10.019
Google Scholar
[2]
Yu J, Cui PJ, Zeng WL, et al. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice [J]. Food Chemistry, 2009, 117: 42-47.
DOI: 10.1016/j.foodchem.2009.03.073
Google Scholar
[3]
Hemwimon S, Pavasant P, Shotipruk A. Microwave assisted extraction of antioxidative anthraquinones from roots of Morinda cirifolia [J]. Separation and Purification Technology, 2007, 54: 44-50.
DOI: 10.1016/j.seppur.2006.08.014
Google Scholar
[4]
Hofmann R, Kappler T, Posten C. Pilot scale press electrofiltration of biopolymers [J]. Separation and Purification Technology, 2006, 51: 303-309.
DOI: 10.1016/j.seppur.2006.01.015
Google Scholar
[5]
Hromadkova Z, Ebringerova A. Ultrasonic extraction of plant materials Investigation of hemicelluloses release from buckwheat hulls [J]. Ultrasonic Sonochemistry, 2003, 10: 127-133.
DOI: 10.1016/s1350-4177(03)00094-4
Google Scholar
[6]
Hromadkova Z, Ebringerova A, Valachovic P. Comparison of classical and ultrasound assisted extraction of polysaccharides from Salvia officinalis L [J]. Ultrasonic Sonochemistry, 1999, 5: 163-168.
DOI: 10.1016/s1350-4177(98)00046-7
Google Scholar
[7]
Wang YJ, Cheng Z, Mao JW, et al. Optimization of ultrasonic assisted extraction process of Poria cocos polysaccharides by response surface methodology [J]. Carbohydrate Polymers, 2009, 77: 713-717.
DOI: 10.1016/j.carbpol.2009.02.011
Google Scholar
[8]
Tsochatzidis N A, Guiraud P, Wilhelm A M, et al. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique[J]. Chemical Engineering Science, 2001, 56: 1831-1840.
DOI: 10.1016/s0009-2509(00)00460-7
Google Scholar
[9]
Giovanni M. Response surface methodology and product optimization [J]. Food Technology, 1983, 37: 41-45.
Google Scholar
[10]
Cacace J E, Mazza G. Optimization of extraction of anthocyanins from black currants with aqueous [J]. Journal of Food Science, 2003, 68: 240-248.
DOI: 10.1111/j.1365-2621.2003.tb14146.x
Google Scholar
[11]
Ferreira S L C, Bruns R E, Ferreira H S, et al. Box–Behnken design: An alternative for the optimization of analytical methods[J]. Analytica Chimica Acta, 2007, 597: 179–186.
DOI: 10.1016/j.aca.2007.07.011
Google Scholar
[12]
Muralidhar R V, Chirumamilla R R, Ramachandran V N, et al. Racemic resolution of RS-baclofen using lipase from Candida cylindracea[J]. Mededelingen, 2001, 66: 227–232.
Google Scholar
[13]
Atkinson G L, Donev A N. Optimum Experimental Design [M]. Oxford: Clarendon Press.
Google Scholar
[14]
Cai W R., Gu X H., Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta [J]. Carbohydrate Polymers, 2008, 71: 403–410.
DOI: 10.1016/j.carbpol.2007.06.008
Google Scholar
[15]
Ravikumar K., Ramalingam S, Krishnan S, et al. Application of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel absorbent[J]. Dyes and Pigments, 2006, 70: 18–26.
DOI: 10.1016/j.dyepig.2005.02.004
Google Scholar
[16]
Muralidhar R V, Chirumamilla R R, Ramachandran V N, et al. Racemic resolution of RS-baclofen using lipase from Candida cylindracea[J]. Mededelingen, 2001, 66: 227–232.
Google Scholar