Transmittance Enhanced Properties of Novel Encapsulated ITO/Arc-TiO2 Antireflective TCO Substrate Prepared by RF Magnetron Sputtering

Article Preview

Abstract:

In this work, a thermally stable multilayered transparent conducting oxide (TCO) utilizing TiO2 antireflection thin film (arc-TiO2) encapsulated under indium tin oxide (ITO) glass has been prepared by RF magnetron sputtering. The novel tri-functional conducting substrate with blocking layer capabilities has been designed via step-down interference coating structure of double layer antireflection coating (DLAR). The mixed-oriented type between the strongest ITO peak at (222) and a weak TiO2 peaks at (101) orientations have been observed under XRD analysis. The antireflection properties of double-layer ITO/arc-TiO2 is evidence with the existence of two maximum peaks around 410 nm and 750 nm. While, the corresponding reduction in reflectance of about 8% and 2% compared to bare ITO was achieved. The ITO/arc-TiO2 blocking layers conserves the low resistivity of ITO at 2.05 x 10-4 Ω cm, even after oxidizing during air annealing process above 400 °C. These results demonstrate that the multilayered ITO/arc-TiO2 with tailored refractive index by means of annealing treatment is a promising approach to realize a substrate which (a): electrically and thermally stable against processing temperature, (b): sustains the higher transmittance of the substrate even there is increase in total substrate thickness and (c): prevents electron recombination process occurring at the interface between the redox electrolytes and the TCO surface. The stable properties are found to be beneficial for use as TCOs in DSSCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

573-582

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gadisa A, Svensson M, Andersson MR, Inganas O. Appl Phys Lett. 84 (2004) 1609.

Google Scholar

[2] K. Yutaka, N. Osamu, S. Hiroyuki, K. Yoshihiro, Y. Yukio. Vacuum 83 (2009) 544.

Google Scholar

[3] Adachi C, Nagai K, Tamoto N. Appl Phys Lett. 66 (1995) 2679.

Google Scholar

[4] Guille´n C, Herrero J. Vacuum 82 (2008) 668.

Google Scholar

[5] Kono Akihiko, Feng Zongbao, Nouchi Norimoto, Shoji Fumiya. Vacuum 83 (2009) 548.

Google Scholar

[6] Ali HM, Mohamed HA, Mohamed SH. Eur Phys J Appl Phys. 31 (2005) 87.

Google Scholar

[7] Hamberg I, Granqvist CG. J Appl Phys. 60 (1986) R123.

Google Scholar

[8] Ishibashi S, Higuchi Y, Ota Y, Nakamura K. J Vac Sci Technol A 8 (1990) 1403.

Google Scholar

[9] Miao L, Jin P, Kanekko K, Terai A, Nabatova-Gabain N, et. al. Appl Surf Sci. 212 (2003) 255–63.

Google Scholar

[10] H. Kawasaki, T. Ohshima, Y. Yagyu, Y. Suda, S.I. Khartsev, et. al, J. Phys. Conf. Ser. 100 (2008) 12038.

Google Scholar

[11] S. Ray, U. Dutta, R. Das, P. Chatterjee, J. Phys. D: Appl. Phys. 40 (2007) 2445.

Google Scholar

[12] Z. Wang, Q. Chen, X. Cai, Appl. Surf. Sci. 239 (2005) 262.

Google Scholar

[13] P. Jin, L. Miao, S. Tanemura, G. Xu, M. Tazawa, K. Yoshimura, Appl. Surf. Sci. 212-213 (2003) 775.

Google Scholar

[14] M. Kamei, H. Enomoto, I. Yasui, Thin Solid Films 392 (2001) 265.

Google Scholar

[15] G. Frank, H. Kostlin, Appl. Phys. A 27 (1982) 197.

Google Scholar

[16] A.K. Kulkarni, K.H. Schulz, T.S. Lim, M. Khan, Thin Solid Films 308 (1997) 1.

Google Scholar

[17] S. Tanaki, K. Matsumoto, K. Suzuki, Appl. Surf. Sci. 33/34 (1988) 804.

Google Scholar

[18] R.B. Pettit, C.J. Brinker, C.S. Ashley, Solar Cells 15 (1985) 267–278.

Google Scholar

[19] M.J. Chuang, H.F. Huang, C.H. Wen, A.K. Chu, Thin Solid Films 518 (2010) 2290–2294.

Google Scholar

[20] R.V. Joshi, S. Brodsky, Applied Physics Letters 61 (1992) 2613–2615.

Google Scholar

[21] J. -Q. Xi, M.F. Schubert, J.K. Kim, M. Chen, S. -Y. Lin, W. Liu, J.A. Smart, Nature Photon 1 (2007) 176–179.

Google Scholar

[22] J. H. Bae, J. M. Moon, S.W. Jeong, J. J. Kim, J. W. Kang, D. G. Kim, J. K. Kim, J. W. Park, H. K. Kim, J. Electrochem. Soc. 155 (2008) J1-J6.

Google Scholar

[23] H. Nagel, A. G. Aberle, and R. Hezel, Prog. Photovolt: Res. Appl. 7 (1999) 245-260.

Google Scholar

[24] E. Vazsonya, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortsmans, J. Szlufcik, and J. Nijs, Sol. Energy Mater. Sol. Cells 57, 179-188 (1999).

DOI: 10.1016/s0927-0248(98)00180-9

Google Scholar

[25] J. van de Lagemaat, N. -G. Park, A.J. Frank, J. Phys. Chem. B 104 (2000) (2044).

Google Scholar

[26] C. Longo, A.F. Nogueira, M. -A. De Paoli, H. Cachet, J. Phys. Chem. B 106 (2002) 5925.

Google Scholar

[27] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47 (2002) 4213.

Google Scholar

[28] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84 (2004) 2433.

Google Scholar

[29] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, J. Phys. Chem. B 107(2003) 8981–8987.

Google Scholar

[30] M.A. Green, Silicon Solar Cells: Adv. Principles and Practice, Bridge Printery, Sydney, Australia, (1995).

Google Scholar

[31] B.S. Richards, S.F. Rowlands, C.B. Honsberg and J.E. Cotter, Res. Appl. 11 (2003) 27.

Google Scholar

[32] C.H. Chang, P. Yu, C.S. Yang, Appl. Phys. Lett. 94 (2009) 051114.

Google Scholar

[33] X. Li, J. Gao, L. Xue, Y. Han, Adv. Funct. Mater. 20 (2010) 259.

Google Scholar

[34] W. Zhou, M. Tao, L. Chen, H. Yang, J. Appl. Phys. 102 (2007) 103105.

Google Scholar

[35] Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Vacuum 81 (2007) 627.

Google Scholar

[36] Mergel, D.; Qiao, Z. J. Appl. Phys. 95 (2004) 5608.

Google Scholar

[37] Gonza`lez, G. B. Mason, T. O. Quintana, J. P. Warschkow, O. Ellis, D. E. Hwang, J. -H. Hodges, J. P. Jorgensen, J. D. J. Appl. Phys. 96 (2004) 3912.

Google Scholar

[38] J. Lee, H. Jung, J. Lee, D. Lim, K. Yang, J. Yi, W.C. Song, Thin Solid Films 516 (2008) 1634–1639.

DOI: 10.1016/j.tsf.2007.05.028

Google Scholar

[39] Y. Hoshi, R. Ohki, Electrochimica Acta 44 (1999) 3927–3932.

Google Scholar

[40] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Appl. Surf. Sci. 241 (2005) 303–308.

Google Scholar

[41] C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Applied Surface Science 254 (2008) 2685-2689.

Google Scholar

[42] Q. Ye, P. Y. Liu, Z. F. Tang, L. Zhai, Vacuum 81 (2007) 627-631.

Google Scholar