Atmospheric Pressure Synthesis of ZnO Nanotubes by Aqueous Solution Route

Article Preview

Abstract:

Single-crystalline ZnO nanotubes were fabricated via a simple aqueous solution method under low temperature and atmospheric pressure conditions. X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) equipped with the selected area electron diffraction (SAED) setup were used to analyze the crystal structure, surface morphology and inner structure of ZnO nanotubes. Photoluminescence (PL) and UV-visible absorption spectra were carried out to investigate optical properties of ZnO nanotubes. The results indicate ZnO nanotubes only exhibit sharp and strong near ultraviolet emission at 363 nm according to PL spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-193

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Choi, M. Y. Choi, S. W. Kim, et al, Nanoscale networked single walled carbon nanotube electrodes for transparent flexible nanogenerators, J. Phys. Chem. C, 114 (2010) 1379-1384.

DOI: 10.1021/jp909713c

Google Scholar

[2] Q. Yang, X. Guo, Z. L. Wang, et al, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect, ACS Nano, 4 (2010) 6285-6291.

DOI: 10.1021/nn1022878

Google Scholar

[3] Y. Z. Zheng, X. Tao, J. F. Chen, et al, Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells, Chem. Mater., 22 (2010) 928-934.

DOI: 10.1021/cm901780z

Google Scholar

[4] J. S. Jeong, J. Y. Lee, C. J. Lee, et al, Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method, Chem. Mater., 17 (2005) 2752-2756.

DOI: 10.1021/cm049387l

Google Scholar

[5] G. R. Li, X. H. Lu, Y. X. Tong, et al, Electrochemical growth and control of ZnO dendritic structures, J. Phys. Chem. C, 111(2007) 6678-6683.

Google Scholar

[6] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348): 56-58(1991).

DOI: 10.1038/354056a0

Google Scholar

[7] K. Biswas, D. Barun, C. N. R. Rao, et al, Growth kinetics of ZnO nanorods: capping-dependent mechanism and other interesting features, J. Phys. Chem. C, 112 (2008) 2404-2411.

DOI: 10.1021/jp077506p

Google Scholar

[8] J. C. Johnson, H. Q. Yan, P. D. Yang, et al. Single Nanowire Lasers, J. Phys. Chem. B, 105 (2001) 11387-11390.

Google Scholar

[9] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, 291(2001) 1947-(1949).

Google Scholar

[10] S. Kar, S. Santra, ZnO nanotube arrays and nanotube-based paint-brush structures: a simple methodology of fabricating hierarchical nanostructures with self-assembled junctions and branches, J. Phys. Chem. C, 112 (2008) 8144-8146.

DOI: 10.1021/jp802893t

Google Scholar

[11] Y. Sun, G. M. Fuge, N. A. Fox, et al, Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film, Adv. Mater., 17 (2005) 2477-2481.

DOI: 10.1002/adma.200500726

Google Scholar

[12] Q. C. Li, V. Kumar, Y. Li, et al, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater., 17 (2005) 1001-1006.

DOI: 10.1021/cm048144q

Google Scholar