Combining Two Detectors for Object Tracking

Article Preview

Abstract:

Tracking objects in the video sequences remains challenging problems such as occlusion and changes in appearance. Recently, the tracking-by-detection framework is widely used. We propose a simple and effective framework based on tracking-by-detection to determine the target position. The main idea is to combine Random Ferns and Implicit Shape Model. By combining these two detection methods, the position of a target can be tracked even when it is not fully appeared. Experiments show significant improvement in handling 3D-motion, fast appearance change and background clutter. We only focus on one target tracking problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-480

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yilmaz A, Javed O, Shah M: submitted to Acm Computing Surveys (CSUR), 2006, 38(4): 13.

Google Scholar

[2] Grabner H, Bischof H. On-line boosting and vision[C]. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE, 2006, 1: 260-267.

DOI: 10.1109/cvpr.2006.215

Google Scholar

[3] Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting[C]. Proc. BMVC. 2006, 1: 47-56.

DOI: 10.5244/c.20.6

Google Scholar

[4] Babenko B, Yang M H, Belongie S: submitted to Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(8): 1619-1632.

DOI: 10.1109/tpami.2010.226

Google Scholar

[5] Zhao X, Liu Y. Generative estimation of 3D human pose using shape contexts matching[C]. Computer Vision–ACCV 2007, 2007: 419-429.

DOI: 10.1007/978-3-540-76386-4_39

Google Scholar

[6] Prakash C, Paluri B, Nalin Pradeep S, et al. Fragments based parametric tracking[C]. Computer Vision–ACCV 2007, 2007: 522-531.

DOI: 10.1007/978-3-540-76386-4_49

Google Scholar

[7] Santner J, Leistner C, Saffari A, et al. PROST: Parallel robust online simple tracking[C]. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 723-730.

DOI: 10.1109/cvpr.2010.5540145

Google Scholar

[8] Gu S, Zheng Y, Tomasi C. Efficient visual object tracking with online nearest neighbor classifier[C]. Computer Vision–ACCV 2010, 2011: 271-282.

DOI: 10.1007/978-3-642-19315-6_21

Google Scholar

[9] Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows: Object localization by efficient subwindow search[C]. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008: 1-8.

DOI: 10.1109/cvpr.2008.4587586

Google Scholar

[10] Lowe D G: submitted to International journal of computer vision, 2004, 60(2): 91-110.

Google Scholar

[11] Ozuysal M, Fua P, Lepetit V. Fast keypoint recognition in ten lines of code[C]. Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. Ieee, 2007: 1-8.

DOI: 10.1109/cvpr.2007.383123

Google Scholar

[12] Leibe B, Leonardis A, Schiele B. Combined object categorization and segmentation with an implicit shape model[C]. Workshop on Statistical Learning in Computer Vision, ECCV. 2004: 17-32.

DOI: 10.1007/11957959_26

Google Scholar

[13] Kalal Z, Matas J, Mikolajczyk K. Pn learning: Bootstrapping binary classifiers by structural constraints[C]. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 49-56.

DOI: 10.1109/cvpr.2010.5540231

Google Scholar

[14] Breiman L: submitted to Machine learning, 2001, 45(1): 5-32.

Google Scholar

[15] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-511-I-518 vol. 1.

DOI: 10.1109/cvpr.2001.990517

Google Scholar

[16] Grabner H, Matas J, Van Gool L, et al. Tracking the invisible: Learning where the object might be[C]. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 1285-1292.

DOI: 10.1109/cvpr.2010.5539819

Google Scholar

[17] Matthews L, Ishikawa T, Baker S: submitted to Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(6): 810-815.

DOI: 10.1109/tpami.2004.16

Google Scholar

[18] Birchfield S. Elliptical head tracking using intensity gradients and color histograms[C]. Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on. IEEE, 1998: 232-237.

DOI: 10.1109/cvpr.1998.698614

Google Scholar

[19] Ross D A, Lim J, Lin R S, et al: submitted to International Journal of Computer Vision, 2008, 77(1): 125-141.

Google Scholar

[20] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE, 2006, 1: 798-805.

DOI: 10.1109/cvpr.2006.256

Google Scholar