Synthesis, Characterization, and Drug Encapsulation of Hyperbranched Polyamidoamine Modified by β-Cyclodextrin

Article Preview

Abstract:

h-PAMAM-COOMe and its β-CD derivatives (h-PAMAM-CD) were synthesized step by step via the Michael addition and ester-aminolysis reaction from hyperbranched polyamidoamine (h-PAMAM). The structures of the as-prepared polymers were confirmed by Ubbelohde viscometer, FTIR, and 1H NMR. A series of inclusion complexation formed by β-naphtol in increasing h-PAMAM-β-CD with different concerntration were investigated by UV-vis spectrometer. The result showed that the novel hyperbranched polymer might have potential applications as delivery materials in chemotherapy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

267-270

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Uekama, IrieT, Hirayama, Cyclodextrin drug carrier systems, J. Chem. Rev. 98 (1998) 2045-2076

DOI: 10.1021/cr970025p

Google Scholar

[2] P. A. Ponce Cevallos, M. P. Buera, B. Elizalde, Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability, J. Food Eng. 99 (2010) 70-75.

DOI: 10.1016/j.jfoodeng.2010.01.039

Google Scholar

[3] L. D. Wilson, M. H. Mohameda, R. Guoa, et al. Sorption of Agrochemical Model Compounds by Sorbent Materials Containing β-cyclodextrin, Journal of Agromedicine, 86 (2008) 237-243.

Google Scholar

[4] M. Xu, S. Wu, F. Zeng, et al. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing, Langmuir, 26 (2010) 4529–4534.

DOI: 10.1021/la9033244

Google Scholar

[5] R. W. M. Krause, B. B. Mamba, L. N. Dlamini, et al. Fe–Ni Nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water, J. Nanopart. Res. 12 (2010) 449-456.

DOI: 10.1007/s11051-009-9659-1

Google Scholar

[6] K. L. Wooley, M. J. Fréchet J., C. Hawker, Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters, Polymer, 35 (1994) 4489-4495.

DOI: 10.1016/0032-3861(94)90793-5

Google Scholar

[7] R. M. England, S. Rimmer. Hyper/highly-branched polymers by radical polymerisations, Polym. Chem. 1 (2010) 1533-1544.

DOI: 10.1039/c0py00154f

Google Scholar

[8] M. Jikei, M. Kakimoto. Hypebranched polymers: a promising new class of material, Prog. Polym. Sci. 26 (2001) 1233-1285.

Google Scholar

[9] D. Konkolewicz, A. Gray-Weale, S. Perrier, Hyperbranched Polymers by Thiol−Yne Chemistry: From Small Molecules to Functional Polymers, J. Am. Chem. Soc. 131 (2009) 18075–18077

DOI: 10.1021/ja908206a

Google Scholar

[10] W. Tian, X. Fan, J. Kong, et al. Cyclodextrin-based hyperbranched polymers: Molecule design, synthesis, and characterization, Macromolecules, 42 (2009) 640–651.

DOI: 10.1021/ma8023848

Google Scholar

[11] X. Böhm, K. Isenbügel, H. Ritter, Cyclodextrin and Adamantane Host–Guest Interactions of Modified Hyperbranched Poly(ethylene imine) as Mimetics for Biological Membranes, Angew. Chem. Int. Ed. 123 (2011) 8042–8045.

DOI: 10.1002/ange.201101604

Google Scholar