Quenching Effect on the Dielectric Properties of PVDF/ZnO Composites

Article Preview

Abstract:

In order to optimize the processing of preparation for dielectric percolative polymer composites, the quenching effect on the dielectric properties of PVDF/ZnO composites is studied. It is found that rapid cooling treatment can accelerate the percolation process and promote the formation of percolative network when the content of filler is more than 17%. The quenched samples show a classical percolation effect, accompanying the great increase of conductivity by orders of magnitude. And the maximum of dielectric constant is up to 780, which is 4 times more than that of slow cooled samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-116

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. M. Zhang, H.F. Li, M. Poh, H.S. Xu, Z.Y. Cheng, F. Xia, C. Huang, An all-organic composite actuator material with a high dielectric constant,Nature vol.419(2002)284-287.

DOI: 10.1038/nature01021

Google Scholar

[2] V. Panwar, J. O. Park, S. H. Park, S.Kumar, R. M. Mehra, Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites, J. Appl. Polym. Sci.115 (2010), 1306-1314.

DOI: 10.1002/app.29702

Google Scholar

[3] Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. T. Li, J. Bai, Fabrication and Dielectric Characterization of Advanced BaTiO3/Polyimide Nanocomposite Films with High Thermal Stability,Adv. Funct. Mater. 18(2008) 1509–1517.

DOI: 10.1002/adfm.200701077

Google Scholar

[4] W. Li, L. Yu, Y. Zhu, D. Hua, External Magnetic Field Induced Percolation in Polyvinylidene Fluoride and Nickel Composites , J. Phys. Chem. C 114(2010) 14004–14007

DOI: 10.1021/jp103086y

Google Scholar

[5] S.H. Yao, Z. M. Dang, H. P. Xu, M. J. Jiang, J. Bai, Exploration of dielectric constant dependence on evolution of microstructure in nanotube/ferroelectric polymer nanocomposites, Appl. Phys. Lett. 92(2008) 082902-082904

DOI: 10.1063/1.2870104

Google Scholar

[6] L. Yu, W. Li, Stretching induced percolation in polyvinylidene fluoride and nickel composites, J. Appl. Polym. Sci. 120 (2011)2368–2373

DOI: 10.1002/app.33430

Google Scholar

[7] Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, Q. Q. Lei, Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites, Adv. Mater. 19(2007) 852-857.

DOI: 10.1002/adma.200600703

Google Scholar

[8] R. P. Bagwe, L. R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(2006) 4357-4362.

DOI: 10.1021/la052797j

Google Scholar

[9] D. Lairez, J. R. Emery, D. Durand, R. A. Pethrick, Dielectric study of epoxy vitrification: does a percolation model apply? Macromolecules 25(1992) 7208–7210

DOI: 10.1021/ma00052a022

Google Scholar

[10] D. M. Grannan, J. C. Garland, D. B. Tanner, Critical behavior of the dielectric constant of a random composite near the percolation threshold. Phys. Rev. Lett. 46(1981) 375–378.

DOI: 10.1103/physrevlett.46.375

Google Scholar