Effect of Indium Addition on the Electrochemical Behavior of Zinc Electrodes in Concentrated Alkaline Solutions

Article Preview

Abstract:

The electrochemical behavior of zinc electrode with indium addition in 35%KOH(or saturated with ZnO) solutions has been investigated systematically by electrochemical methods including linear polarization, potentiostatic polarization, potentiodynamic anodic polarization, potential-time measurements at a constant current density, combining the observations of scanning electron microscopy (SEM). It is indicated that the indium addition makes the corrosion potential of Zn shifted positively and its corrosion current increased. Galvanostatic results showed that the addition of indium shortened the passivation time, indicating indium is an active element to the electrochemical performance of zinc alloy electrode. The potentiostatic polarization curves of the pure zinc plate and zinc-indium alloy electrodes in a 35%KOH solution saturated with ZnO indicated that the addition of indium improved the cathodic polarization of alloy electrodes and the deposition overpotential,mean while it depressed the deposition morphology of zinc on the electrode and accelerated the dendrite growth. Scanning electron microscopy images showed that the addition of indium aggravated the corrosion of zinc electrode which may be responsible for the increased tendency to passivation at high current densities. It has been found that at low current densities the reaction kinetics may be increased by indium addition , which is agreement with the discharging test of actual alkaline batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-104

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.G.. Zhang. Corrosion and Electrochemistry of Zinc, Plenum Publishers, New York (1996).

Google Scholar

[2] X.G.. Zhang. J. Power Sources 163 (2006) 591-597

Google Scholar

[3] R.M. Dell. Solid State Ionics 134 (2000) 139-158

Google Scholar

[4] McLarnon, F. R., and Cairns, E.J.: The secondary alkaline zinc electrode, J. Electrochem. Soc. 138, 645-664, 1991.

DOI: 10.1149/1.2085653

Google Scholar

[5] McBreen, J., and Cairns, E.J.: The zinc electrode, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 11, H. Gerischer and C. W. Tobias(eds.), pp.273-352, John Wiley & sons, New York, 1978.

Google Scholar

[6] Gouda, K. K., Khedr, M. G. A., and Shams EI Din, A. M.: Role of anions in the corrosion and corrosion-inhibition of zinc in aqueous solutions, Corros. Sci.7, 221-230, (1967)

DOI: 10.1016/s0010-938x(67)80084-2

Google Scholar

[7] Kordesch, K. V.: Alkaline manganese dioxide zinc batteries, in Batteries, K. V. Kordesch (ed), Vol.1, pp.241-384, Marcel Dekker, New York, (1974)

DOI: 10.1007/978-1-4615-6687-8_6

Google Scholar

[8] Brodd, R. J.: Batteries for Cordless Appliances, Research Studies Press, Letchworth, England, 1987.

Google Scholar

[9] Huber, R.: Leclanche batteries, in Batteries, K. V. Kordesch (ed.), Vol. 1, pp.1-239, Marcel Dekker, New York, 1974.

Google Scholar

[10] A. Renuka, A. Veluchamy, N. Venkatakrishnan, S.N. Begum V.R. Chidambaram, R. Sabapathi, J. Appl. Electrochem. 22 (1992) 182.

DOI: 10.1007/bf01023822

Google Scholar

[11] E.G. Gagnon, J. Electrochem. Soc. 138 (1991) 3173.

Google Scholar

[12] J.Y. Huot, M. Malservisi, J. Power Sources 96 (2001) 133.

Google Scholar

[13] A.P. Pavlov, L.K. Grigorieva, S.P. Chizhik, V.K. Stankov, J. Power Sources 62 (1996) 113.

Google Scholar

[14] H. Chang, C. Lim, J. Power Sources 66 (1997) 115.

Google Scholar

[15] L. Telli, A. Hammouche, B. Brahimi, R.W.D. Doncker, J. Power Sources 103 (2002) 201.

Google Scholar

[16] Y. Shen, K. Kordesch, J. Power Sources 87 (2000) 162.

Google Scholar

[17] Y. Sharma, M. Aziz, J. Yusof, K. Kordesch, J. Power Sources 94(2001) 129.

Google Scholar

[18] R.M. Dell, Solid State Ionics 134 (2000) 139.

Google Scholar

[19] J. Jindra, J. Power Sources 66 (1997) 15.

Google Scholar

[20] J. Jindra, J. Power Sources 88 (2000) 202.

Google Scholar

[21] F. Beck, P. Ruetschi, Electrochim. Acta 45 (2000) 2467.

Google Scholar

[22] A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Sevenyi, D.C. Williams, J. Power Sources 80 (1999) 53.

Google Scholar

[23] J. Skelton, R. Serenyi, J. Power Sources 65 (1997) 39.

Google Scholar

[24] D. Coates, E. Ferreira, A. Charkey, J. Power Sources 65 (1997)109.

Google Scholar

[25] W.H. Zhu, M.E. Flanzer, B.J. Tatarchuk, J. Power Sources 112 (2002)353.

Google Scholar

[26] J. Goldstein, I. Brown, B. Koretz, J. Power Sources 80 (1999)171.

Google Scholar

[27] D.F. Smith, J.A. Gucinski, J. Power Sources 80 (1999) 66.

Google Scholar

[28] H. Lewis, P. Jackson, A. Salkind, T. Danko, R. Bell, J. Power Sources96 (2001) 128.

Google Scholar

[29] F.R. Mclarnon, E.J. Cairns, J. Power Sources 138 (1991) 645.

Google Scholar

[30] W. Glaeser, S.K. Keune, P. Merkel, J. Power Sources 80 (1999)72.

Google Scholar

[31] M.V. Simicic, K.I. Popov, N.V. Krstajic, J. Electroanal. Chem. 484(2000) 18.

Google Scholar

[32] A.R.S. Kannan, S. Muralidharan, K.B. Sarangapani, V.Balaramachandran, V. Kapali, J. Power Sources 57 (1995) 93.

DOI: 10.1016/0378-7753(95)02225-2

Google Scholar

[33] R. Shivkumar, G.P. Kalaignan, T. Vasudevan, J. Power Sources 55(1995) 53.

Google Scholar

[34] R. Shivkumar, G.P. Kalaignan, T. Vasudevan, J. Power Sources 75(1998) 90.

Google Scholar

[35] J.M. Wang, L. Zhang, C. Zhang, J.Q. Zhang, J. Power Sources 102(2001) 139.

Google Scholar

[36] J.L. Zhu, Y.H. Zhou, H. Yang, J. Power Sources 69 (1997) 169.

Google Scholar

[37] Grzegorz Wnuk, Jolanta Romanowska, Tadeusz Pomianek. J. Chem. Thermodynamics35 (2003) 711–717

Google Scholar

[38] A. G. Munoz, S.B. Saidman, J.B. Bessone. Corrosion Science 43(2001)1245-1265

Google Scholar

[39] M. Yano, S. Fujitani, K. Nishio, Y. Akai, M. Kurimura. Journal of Power Sources 74(1998) 129-134.

DOI: 10.1016/s0378-7753(98)00044-5

Google Scholar

[40] Jean-Yves Huot, Emmanuelle Boubour. Journal of Power Sources 65(1997)81-85.

Google Scholar

[41] Bocchi, N., da Cunha, M. R., and D, Alkaline, C.V.: The passivating films of zinc in alkaline solution, Key Eng. Mater. 20-28(1988)3941-3946.

DOI: 10.4028/www.scientific.net/kem.20-28.3941

Google Scholar

[42] Chang, Y., and Prentice, G.: A model for the anodic dissolution of the zinc electrode in the prepassive region, J. Electrochem. Soc. 136(1989)3398-3403.

DOI: 10.1149/1.2096460

Google Scholar

[43] Dirkse, T. P.: Voltage decay at passivated zinc anodes, J. Appl. Electrochem. 1(1971)27-33.

DOI: 10.1007/bf00615743

Google Scholar

[44] Hull, M. N., Ellison, J. Electrochem. Soc. 117(1970)192-198.

Google Scholar

[45] Sato, Y., Niki, H., and Takamura, T.: Effects of carbonate on the anodic dissolution and the passivation of zinc electrode in concentrated solution of potassium hydroxide, J. Electrochem. Soc. 118 (1971) 1269-1272.

DOI: 10.1149/1.2408303

Google Scholar

[46] Huang Qi-ming,Li Wei-shan,Zhang Shi-yong,et al. Application of indium in mercury-free alkaline Zn/MnO2 batteries. BATTERY BIMONTHLY, 2001,31(5):233-235

Google Scholar

[47] Shi Jian-zhen,Gao Cui-qin,Zhu Ji-ling,et al. The effects of metals on the electrochemical behavior of Zn electrode. Chinese Journal of Power Sources, 1997, 21(1): 3-7

Google Scholar

[48] Dirkse, T. P., and Hampson, N. A.: The anodic behaviour of zinc in aqueous KOHsolution. Part Ⅰ. Passivation experiments at very high current densities, Electrochim. Acta 16(1971) 2049-2056.

DOI: 10.1016/0013-4686(71)85018-1

Google Scholar

[49] Passivity and passivity breakdown of a zinc electrode in aerated neutral sodium nitrate solutions. Electrochimica Acta 50 (2005) 1265-1274

DOI: 10.1016/j.electacta.2004.07.051

Google Scholar

[50] Liu, M., Cook, G. M., and Yao, N.P.: Passivation of zinc anodes in KOH electrolytes, J. Electrochem. Soc. 128 (1981)1663-1668.

DOI: 10.1149/1.2127707

Google Scholar

[51] G. Wilcox and P. Mitchell. J. Power Sources, 28, 345 (1989).

Google Scholar