Preparation and Analysis of Anatase TiO2 Nanosheets with an Optimal Percentage of {001} Facets for High Efficient Photocatalyst

Article Preview

Abstract:

Anatase TiO2 nanosheets with different percentage of exposed high-reactive {001} facets were synthesized successfully. Besides the FESEM and TEM anslysis, XRD, Raman, and PL analysis were also conducted systematically to give a new insight on analyzing the as-prepared {001} facets dominated TiO2 photocatalysts. Photocatalytic activities of the photocatalysts were tested by the degradation of methylene blue (MB) aqueous solution under UV irradiation. The results indicated that there was an optimal percentage of the exposed {001} facets existed to give the highest photocatalytic activity of as-prepared TiO2 nanosheets. A possible mechanism for the enhanced photocatalytic activity of the {001} facets dominated anatase TiO2 was also proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

429-434

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima and K. Honda: Nature Vol. 238 (1972), p.37

Google Scholar

[2] A. Fujishima, X. Zhang and D.A. Tryk: Surf. Sci. Rep. Vol. 63 (2008), p.515

Google Scholar

[3] C. Randorn and J.T.S. Irvine: J. Mater. Chem. Vol. 20 (2010), p.8700

Google Scholar

[4] G.S. Wu, J.P. Wang, D.F. Thomas and A.C: Chen, Langmuir Vol. 24 (2008), p.3503

Google Scholar

[5] C.-T. Dinh, T.-D. Nguyen, F. Kleitz and T.-O. Do: Chem. Commun. Vol. 47 (2011), p.7797

Google Scholar

[6] S. Chen, M. Malig, M. Tian and A. Chen: J. Phys. Chem. C Vol. 116 (2012), p.3298

Google Scholar

[7] Y. Bessekhouad, D. Robert and J.V. Weber: J. Photochem. Photobio. A: Chem. Vol. 163 (2004), p.569

Google Scholar

[8] W. Chen, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang and Z. Lai: J. Am. Chem. Soc. Vol. 133 (2011), p.14896

Google Scholar

[9] V. Stengl, D. Popelkova and P. Vlacil: J. Phys. Chem. C Vol. 115 (2011), p.25209

Google Scholar

[10] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng and G.Q. Lu: Nature Vol. 453 (2008), p.638

Google Scholar

[11] G. Liu, J.C. Yu, G.Q. Lu and H.-M. Cheng: Chem. Commun. Vol. 47 (2011), p.6763

Google Scholar

[12] J. Pan, G. Liu, G.Q.M. Lu and H.-M. Cheng: Angew. Chem. Int. Ed. Vol. 50 (2011), p.2133

Google Scholar

[13] Q.J. Xiang, K.L. Lv and J.G. Yu: Appl. Catal. B - Environ. Vol. 96 (2010), p.557

Google Scholar

[14] X. Han, Q. Kuang, M. Jin, Z. Xie and L. Zheng: J. Am. Chem. Soc. Vol. 131 (2009), p.3152

Google Scholar

[15] G. Liu, H.G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G.Q. Lu and H.-M. Cheng: J. Phys. Chem. C Vol. 113 (2009), p.21784

Google Scholar

[16] X. Chen, L. Liu, P.Y. Yu and S.S. Mao: Science Vol. 331 (2011), p.746

Google Scholar

[17] F. Tian, Y. Zhang, J. Zhang and C. Pan: J Phys. Chem. C Vol. 116 (2012), p.7515

Google Scholar

[18] T. Tachikawa, S. Yamashita and T. Majima: J. Am. Chem. Soc. Vol. 133 (2011), p.7197

Google Scholar