QSPR Models for the Physicochemical Properties of Polychlorinated Naphthalene Congeners

Article Preview

Abstract:

Based on quantitative structureproperty relationship (QSPR) of organic compounds, geometrical optimization and quantum chemical parameter calculations have been performed at the B3LYP/6-31G* level of theory for 75 polychlorinated naphthalenes (PCNs). A number of statistically-based parameters have been obtained. Relationship between the physicochemical properties of polychlorinated naphthalene compounds (n-octanol/air partition coefficient, sub-cooled liquid vapor pressure, water solubility) and the structural descriptors have been established by multiple linear regression (MLR) method. The results show that the molecular volume (Vmc), dipolar moment (μ), and the energy of lowest unoccupied molecular orbital (ELUMO), together with the quantity derived from electrostatic potential () can be well used to express the quantitative structure-property relationships of polychlorinated naphthalene compounds. The models constructed have good robustness and high predictive capability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

440-443

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Falandysz: Food Addit. Contam. Vol. 20 (2003), p.995.

Google Scholar

[2] J. Falandysz, M. Kawano, M. Ueda, M. Matsuda, K. Kannan, J. P. Giesy and T. Wakimoto: J. Environ. Sci. Health. A Vol. 35 (2000), p.281.

Google Scholar

[3] J. L. Domingo: J. Chromatogr. A Vol. 1054 (2004), p.327.

Google Scholar

[4] P. Castells, J. Parera, F. J. Santos and M. T. Galceran: Chemosphere Vol. 70 (2008), p.1552.

Google Scholar

[5] M. Schuhmacher, M. Nadal and J. L. Domingo: Environ. Sci. Technol. Vol. 38 (2004), p.1960.

Google Scholar

[6] T. F. Bidleman, P. A. Helm, B. M. Braune and G. W. Gabrielsen: Sci. Total. Environ. Vol. 408 (2010), p.2919.

Google Scholar

[7] O. Pfeifer, U. Lohmann and K. Ballschmiter: Fresenius J. Anal. Chem. Vol. 371 (2001), p.598.

Google Scholar

[8] J. S. Murray, F. Abu-Awwad and P. J. Politzer: Phys. Chem. A Vol. 103 (1999), p.1853.

Google Scholar

[9] J. W. Zou, W. N. Zhao, Z. C. Shang, M. L. Huang, M.Guo and Q.S. Yu: J. Phys. Chem. A Vol. 106 (2002), p.11550.

Google Scholar

[10] H. Y. Xu, J. Y. Zhang, J. W. Zou and X. S. Chen: J. Mol. Graph. Model. Vol. 26 (2008), p.1076.

Google Scholar

[11] A. Pedretti, L. Villa and G. Vistoli: J. Mol. Graphics Vol. 21 (2002), p.47.

Google Scholar

[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al: Gaussian 98 (RevisionA.9): Gaussian, Inc. Pittsburgh, PA. (1998).

Google Scholar

[13] P. Tomasz, F. Jerzy: Atmos. Environ. Vol. 39 (2005), p.1439.

Google Scholar

[14] P. Tomasz, M. Aleksandra, F. Jerzy, K. Yana and L. Jerzy: J. Hazard. Mater. Vol. 170 (2009), p.1014.

Google Scholar