Calculation of Ionization Potential and Electron Affinity of the Optoelectronic Material Iridium (III) Metal Complexes Containing the 2-phenyl Pyridine-Type Ligands

Article Preview

Abstract:

Solid state ionization potential and electron affinity of iridium (III) metal complexes containing the 2-phenyl pyridine-type ligands was calculated using density functional theory (DFT). It is shown that the calculated results are in well agreement with the experimental values. With this approach, it is convince to obtain solid state ionization potentials and electron affinities of a range of neutral transition metal complexes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-55

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 21 (2009) 1450-1472.

Google Scholar

[2] C. Falkenberg, S. Olthof, R. Rieger, M. Baumgarten, K. Muellen, K. Leo, M. Riede, Dyes. Solar. Energ. Mater. Solar. Cells. 95 (2011) 927-932.

DOI: 10.1016/j.solmat.2010.11.024

Google Scholar

[3] P. I. Djurovich, E. I. Mayo, S. R. Forrest, M. E. Thompson, Organic Electronics. 10 (2009) 515-520.

Google Scholar

[4] C. G. Zhan, J. A. Nichols, D. A. Dixon, J. Phys. Chem. 107 (2003) 4184-4195.

Google Scholar

[5] D. D. Liang, J. B. Liu, L. J. Kang, R. F. Jin, S. S. Tang, Mol Phys: 110 (2012) 369-375.

Google Scholar

[6] B. Z. Yang, Q. Zhang, J. Zhong, S. Huang, H. X. Zhang, Organic Electronics 13 (2012) 2568-2574.

Google Scholar

[7] P. K. Nayak, N. Periasamy, Org. Electron. 10 (2009) 532-535.

Google Scholar

[8] P. K. Nayak, N. Periasamy, Org. Electron. 10 (2009) 1396-1400.

Google Scholar

[9] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.

Google Scholar

[10] B. Mennucci, J. Tomasi, J. Chem. Phys. 106 (1997) 5151-5158.

Google Scholar

[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian09, Revison A 02, Gaussian Inc., Pittsburgh PA, (2009).

Google Scholar

[12] Y. Q. Liu, G. Gahungu, X. B. Sun, X. C. Qu, Z. J. Wu, J. Phys. Chem. C. 116 (2012) 26496-26506.

Google Scholar

[13] J. P. Perdew, M. Levy, Phys. Rev. B 56 (1997) 16021-16028.

Google Scholar

[14] Y. Wang, W. Y. Gao, S. Braun, W. R. Salaneck, F. Amy, Appl. Phys. Lett. 87 (2005) 93501.

Google Scholar