Ionic Liquid Assisted Dispersion of Reduced Graphene Oxide in Epoxy Composites with Improved Mechanical Properties

Article Preview

Abstract:

Graphene nanosheets were prepared by chemical reduction of the exfoliated graphite oxide using sodium borohydride (NaBH4). The graphene/epoxy composites were separately fabricated in the absence or presence of imidazolium-based ionic liquids, and their dynamic thermomechanical and tensile properties were studied. TEM examinations show that graphene sheets are well dispersed in the epoxy resin and have strong interface adhesion with the matrix due to the π-π and/or cation-π interactions between graphene and imidazolium ions. The composite fabricated by assistance of ionic liquids shows larger increases in Youngs modulus, tensile strength, storage modulus and glass transition temperature compared to the composite without using ionic liquids. This work provides a method for the fabrication of multifunctional graphene-based polymer composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Allen, V.C. Tung and R.B. Kaner: Chem. Rev. Vol. 110 (2010), p.132.

Google Scholar

[2] H. Kim, A.A. Abdala and C.W. Macosko: Macromolecules Vol. 43 (2010), p.6515.

Google Scholar

[3] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose and J.H. Lee: Prog. Polym. Sci. Vol. 35 (2010), p.1350.

Google Scholar

[4] J.R. Potts, D.R. Dreyer, C.W. Bielawski and R.S. Ruoff: Polymer Vol. 52 (2011), p.5.

Google Scholar

[5] R. Verdejo, M.M. Bernal, L.J. Romasanta and M.A. Lopez-Manchado, J. Mater. Chem. Vol. 21 (2011), p.3301.

DOI: 10.1039/c0jm02708a

Google Scholar

[6] Y.K. Yang, C.E. He, R.G. Peng, A. Baji, X.S. Du, Y.L. Huang, X.L. Xie and Y. -W. Mai: J. Mater. Chem. Vol. 22 (2012), p.5666.

Google Scholar

[7] Y.K. Yang, L.J. Yu, R.G. Peng, Y.L. Huang, C.E. He, H.Y. Liu, X.B. Wang, X.L. Xie and Y. -W. Mai: Nanotechnology Vol. 23 (2012), p.225701.

Google Scholar

[8] Y.K. Yang, C.E. He, W.J. He, L.J. Yu, R.G. Peng, X.L. Xie, X.B. Wang and Y. -W. Mai: J. Nanopart. Res. Vol. 13 (2011), p.5571.

Google Scholar

[9] Y. Liang, D. Wu, X. Feng and K. Müllen: Adv. Mater. Vol. 21 (2009), p.1679.

Google Scholar

[10] K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowalla: Nano Lett. Vol. 9 (2009), p.1058.

DOI: 10.1021/nl8034256

Google Scholar

[11] H. -K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M. -H. Park, K.H. An, I.J. Kim, C. -W. Yang, C.Y. Park, R.S. Ruoff and Y.H. Lee: J. Am. Chem. Soc. Vol. 130 (2008), p.1362.

Google Scholar

[12] H. -K. Jeong, L. Colakerol, M.H. Jin, P. -A. Glans, K.E. Smith and Y.H. Lee: Chem. Phys. Lett. Vol. 460 (2008), p.499.

Google Scholar

[13] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii and T. Aida: Science Vol. 300 (2003), p. (2072).

DOI: 10.1126/science.1082289

Google Scholar

[14] M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson and G. Thompson: Polymer 48 (2007), p.5662.

DOI: 10.1016/j.polymer.2007.06.073

Google Scholar

[15] Y.S. Song and J.R. Youn: Carbon Vol. 43 (2005), p.1378.

Google Scholar

[16] J. Zhu, H.Q. Peng, F. Rodriguez-Macias, J.L. Margrave, V.N. Khabashesku, A.M. Imam, K. Lozano and E.V. Barrera: Adv. Funct. Mater. Vol. 14 (2004), p.643.

DOI: 10.1002/adfm.200305162

Google Scholar

[17] T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'homme and L.C. Brinson: Nat. Nanotechnol. Vol. 3 (2008), p.327.

DOI: 10.1038/nnano.2008.96

Google Scholar

[18] Z. Wang, X.T. Yang, Q. Wang, H. T. Hahn, S. Lee, K. -H. Lee and Z. Guo: Int. J. Smart Nano Mater. Vol. 2 (2011), p.176.

Google Scholar

[19] M.P. Scott, M. Rahman and C.S. Braze: Eur. Polym. J. Vol. 39 (2003), p. (1947).

Google Scholar