Improved Efficiency in Organic Light Emitting Device with a Excton Confining Structure

Article Preview

Abstract:

A white organic light emitting device (WOLED) with excton confining structure is reported. The blue and red emitting layer consist of 1,4bis (2,2-diphenyl vinyl) benzene (DPVBi) and the bis (1-(phenyl) isoquinoline) iridium (III) acetylanetonate [Ir (piq)2(acac)] doped into 4,4(-N,N)-dicarbazole-biphenyl (CBP) host, respectively. The devices were made of ITO/ m-MTDATA (40 nm)/ NPB (10 nm) /DPVBi (8 nm)/ Bhen (x nm)/ CBP: Ir (piq)2(acac) 2% 5nm/ Alq (50 nm )/ LiF (1 nm) / Al (200 nm), by adding excton confining layer, with only a small increase in operating voltage. However, the efficiency of device increases. The electroluminescent (EL) spectra exhibit two peaks at 456 and 628 nm, resulting in white light emission with the Commission Internationale dEclairage (CIE) chromaticity coordinates of (0.222, 0.2402) at 4V to (0.1924, 0.1986) at 13V when x is 8, while the device shows the current efficiency of 4.79 cd/A at 6V, its maximum luminance is 14130 cd/m2 at 13V, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1063-1067

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Tang and S. A. VanSlyke: Appl. Phys. Lett. Vol. 51 (1987), p.913.

Google Scholar

[2] J. Kali-nowski, M. Cocchi, D. Virgili, V. Fattori, and J. A. GarethWillams: Adv. Mater. Vol. 19(2007), p.4000.

Google Scholar

[3] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest: Nature. Vol. 440(2006), p.908.

Google Scholar

[4] Y. G. Lee, I. S. Kee, H. S. Shim, I. H. Ko, S. Lee, and K. H. Koh: Appl. Phys. Lett. Vol. 90(2007), p.243508.

Google Scholar

[5] J. H. Seo, J. H. Park, Y. K. Kim, J. H. Kim, G. W. Hyung, K. H. Lee, and S. S. Yoon: Appl. Phys. Lett. Vol. 90 (2007), p.203507.

Google Scholar

[6] H. Kanno, N. C. Giebink, Y. Sun, and S. R. Forrest: Appl. Phys. Lett. Vol. 89 (2006), p.023503.

Google Scholar

[7] H. Kanno, R. J. Holms, Y. Sun, S. KenaCohen, and S. R. Forrest: Adv. Mater. Vol. 18(2006), p.339.

Google Scholar

[8] C. C. Chang, J. F. Chen, S. W. Hwang, and C. H. Chen: Appl. Phys. Lett. Vol. 87 (2005), 253501.

Google Scholar

[9] S. Tokito,T. Iijima,T. Tsuzuki, and F. Sato: Appl. Phys. Lett. Vol. 83 (2003), p.2459.

Google Scholar

[10] J. H. Park, T. W. Lee, Y. C. Kim, O. O. Park, and J. K. Kim: Chem. Phys. Lett. Vol. 403(2005), p.293.

Google Scholar

[11] G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer, and K. Leo: Appl. Phys. Lett. Vol. 89(2006), p.083509.

Google Scholar

[12] S. Tao, C. S. Lee, S. T. Lee, and X. Zhang: Appl. Phys. Lett. Vol. 91(2007), p.013507.

Google Scholar

[13] T. W. Lee, J. H. Park, O. O. Park, J. Lee, and Y. C. Kim: Opt. Mater. Vol. 30 (2007), p.486.

Google Scholar

[14] T. W. Lee, O. O. Park, H. N. Cho, J. M. Hong, C. Y. Kim, and Y. C. Kim: Synth. Met. Vol. 122 (2001), p.437.

Google Scholar

[15] S. W. Wen, M. T. Lee, C. H. Chen: IEEE/ OSAJ. Disp. Technol. Vol. 1 (2005), p.90.

Google Scholar

[16] S. Tokito, T. Iijima, Y. Suzuri, and H. Kita: Appl. Phys. Lett. Vol. 83(2003), p.569.

Google Scholar

[17] T. Nakayama, K. Hiyama, K. Furukawa, and H. Ohtani:J. SID. Vol. 16 (2008), p.231.

Google Scholar

[18] P. Wellmann, M. Hofmann, O. Zeika, A. Werner, J. Birnstock, R. Meerheim, G. He, K. Walzer, M. Pfeiffer, and K. Leo: J. SID. Vol. 13(2005), p.393.

DOI: 10.1889/1.1927730

Google Scholar

[19] Y. Divayana, X. W. Sun, B. J. Chen, G. Q. Lo, C. Y. Jiang, and K. R. Sarma: Appl. Phys. Lett. Vol. 89(2006), p.173511.

Google Scholar

[20] Chih-Hao Chang, Chung-Chia Chen, Chung-Chih Wu, Cheng-Han Yang, and Yun Chi: Org. Electron. Vol. 10( 2009), p.1364.

Google Scholar

[21] Y. Divayana, X. W. Sun: Org. Electron. Vol. 9 (2008), p.136.

Google Scholar