Initial Surface Reactions Mechanisms of Atomic Layer Deposition TiO2 on H/Si(100)-2×1 Surface

Article Preview

Abstract:

The initial surface reaction mechanisms of atomic layer deposition TiO2 on H/Si (100 )-2×1 surface using Ti (OCH3)4 and H2O as precursors are investigated by density functional theory. The ALD process is divided into two half-reactions, i.e., Ti (OCH3)4 and H2O half-reactions. The adsorption energy of Ti (OCH3)4 on H/Si (100)2×1 surface is only-2.4 kJ/mol. The overall reaction of Ti (OCH3)4 is exothermic, which indicates that Ti (OCH3)4 half-reactions are favorable on thermodynamic. Howerver, H2O half-reactions are endothermic and thermodynamically unfavorable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1052-1056

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Aarik, A. Aidla, T. Uustare, V. Sammelselg: J. Cryst. Growth Vol. 148 (1995), p.268.

Google Scholar

[2] J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, T. Uustare: J. Cryst. Growth Vol. 169 (1996), p.496.

DOI: 10.1016/s0022-0248(96)00423-x

Google Scholar

[3] J. Aarik, A. Aidla, A. -A. Kiisler, T. Uustare, V. Sammelselg: Thin Solid Films Vol. 305 (1997), p.270.

DOI: 10.1016/s0040-6090(97)00135-1

Google Scholar

[4] J. Aarik, A. Aidla, H. Mändar, T, Uustare: Appl. Surf. Sci. Vol. 172 ( 2001), p.148.

Google Scholar

[5] M.K. Ghosh, C.H. Choi: Chem. Phys. Lett. Vol. 457 (2008), p.69.

Google Scholar

[6] M.K. Ghosh, C.H. Choi: Chem. Phys. Lett. Vol. 461 (2008), p.249.

Google Scholar

[7] V. Pore, A, Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, J. Keinonen: Chem. Vap. Deposit. Vol. 10 (2004), p.143.

DOI: 10.1002/cvde.200306289

Google Scholar

[8] J. Aarik, J. Karlis, H. Mändar, T. Uustare, V. Sammelselg: Appl. Surf. Sci. Vol. 181 (2001), p.339.

DOI: 10.1016/s0169-4332(01)00430-5

Google Scholar

[9] A. Rahtu, K. Kukli, M. Ritala: Chem. Mater Vol. 13 (2001), p.817.

Google Scholar

[10] I. -D. Kim, H.L. Tuller, H. -S. Kim, J. -S. Park: Appl. Phys. Lett. Vol. 85 (2004), p.4705.

Google Scholar

[11] S.K. Kim. W. -D. Kim, K. -M. Kim, C.S. Hwang, J. Jeong: Appl. Phys. Lett. Vol. 85 (2004), p.4112.

Google Scholar

[12] D. Jeong, J. Lee. H. Shin, J. KIM, M. Sung: Korean Phys. Soc. Vol. 45 (2004), p.4705.

Google Scholar

[13] M. Rose, J. Niinist, P. Michalowski, L. Gerlich, L. Wilde, I. Endler, J. W. Bartha: J. Phys. Chem. C Vol. 113 (2009), p.21825.

Google Scholar

[14] K. Knapas, M. Ritala: Chem. Mater. Vol. 20 (2008), p.5698.

Google Scholar

[15] J. Niinistö, A. Rahtu, M. Putkonen, M. Ritala, M. Leskelä, L. Niinistö: Langmuir Vol. 21(2005), p.7321.

DOI: 10.1021/la0500732

Google Scholar

[16] M. Rose, J. Niinistö, I. Endler, J.W. Bartha, P. Kücher , M. Ritala: Appl. Mater. Interfaces Vol. 2 (2010), p.347.

Google Scholar

[17] A. Rahtu, T. Alaranta, M. Ritala: Langmuir, Vol. 17 (2001), p.6506.

Google Scholar

[18] D.N. Goldstein, J.A. McCormick, S.M. George: J. Phys. Chem. C Vol. 112 (2008), p.19530.

Google Scholar

[19] T. Aaltonen, A. Rahtu, M. Ritala, M. Leskelä: Electrochem. Solid-State Lett. Vol. 6 (2003), p. C130.

Google Scholar

[20] J. Ren, C.X. Cui, G.F. Zhou, Y.C. Liu, Y.Q. Hu, B.Z. Wang: Thin Solid Films Vol. 519 (2011), p.3716.

Google Scholar

[21] L. Jeloaica, A. Estève, M. Djafari Rouhani, D. Estève: Appl. Phys. Lett. Vol. Vol. 83 (2003), p.542.

DOI: 10.1063/1.1587261

Google Scholar

[22] A. Estève, M. Djafari Rouhani, L. Jeloaica, D. Estève: Comput. Mater. Sci. Vol. 27 (2003), p.75.

Google Scholar

[23] M.D. Halls, K. Raghavachari: J. Phys. Chem. B Vol. 108 (2004), p.4058.

Google Scholar

[24] Z. Hu, C.H. Turner: J. Am. Chem. Soc. Vol. 129 (2007), p.3863.

Google Scholar

[25] M.K. Ghosh, C.H. Choi: Chem. Phys. Lett. Vol. 457 (2008), p.69.

Google Scholar

[26] G.F. Zhou, J. Ren, S.W. Zhang: Thin Solid Films Vol. 524 (2012), p.179.

Google Scholar

[27] V.V. Brodskii, E.A. Rykova, A.A. Bagatur'yants, A.A. Korkin: Comp. Mater. Sci. Vol. 24 (2002), p.278.

Google Scholar

[28] M. Nolan, S.D. Elliott: Chem. Mater. Vol. 22 (2010), p.117.

Google Scholar

[29] A. Zydor, S.D. Elliott: J. Nanosci. Nanotechnol. Vol. 11(2011), p.8089.

Google Scholar

[30] A. Zydor, V.G. Kessler, S.D. Elliott: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.7954.

Google Scholar

[31] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian Inc., Pittsburgh PA, (2003).

Google Scholar

[32] A.D. Becke: Phys. Rev. A Vol. 38 (1988), p.3098.

Google Scholar

[33] A.D. Becke: J. Chem. Phys. Vol. 98 (1993), p.5648.

Google Scholar

[34] C. Lee, W. Yang, R.G. Parr: Phys. Rev. B Vol. 37 (1988), p.785.

Google Scholar