Molecular Dynamics Simulation on Terahertz Spectra of Methamphetamine Hydrochloride

Article Preview

Abstract:

Methamphetamine hydrochloride crystal (trade name Methedrine) that is one of the illegal drugs used as a stimulant to the nervous system has been considered to be detected by T-ray via the terahertz time-domain spectroscopy (THz-TDS). In this research, we simulated the THz spectra of Methedrine by molecular dynamics methods for the first time. The terahertz spectra at temperatures 78.4K, 200K, 294K and 400K in the frequency range of 10-100cm-1 were investigated, which exhibited the variation of spectra position and intensity with increasing temperature. Firstly, we used DL_POLY simulation package to obtain the instantaneous values of the dipole moment. Subsequently, the intensities of THz vibrational modes were obtained by the Fourier transform of the autocorrelation function of the dipole moment. The results showed our theoretical calculation by molecular dynamics simulations got a good consistency with available experimental spectroscopy. These are useful to determine the best conditions of temperature at which the terahertz time-domain spectroscopy of Methedrine results a highly informative spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

35-39

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hakey PM, Allis DG, Ouellette W, Korter TM. Cryogenic Terahertz Spectrum of (+)-Methamphetamine Hydrochloride and Assignment[J]. J Phys Chem A. 2009; 113: 5119.

DOI: 10.1021/jp810255e

Google Scholar

[2] Tubergen MJ, Lavrich RJ, Plusquellic DF, Suenram RD. Rotational Spectra and Conformational Structures of 1-Phenyl-2-propanol, Methamphetamine, and 1-Phenyl-2-propanone[J]. J Phys Chem A. 2006; 110: 13188.

DOI: 10.1021/jp064810u

Google Scholar

[3] Allis DG, Prokhorova DA, Korter TM. Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX[J]. J Phys Chem A. 2006; 110: (1951).

DOI: 10.1021/jp0554285

Google Scholar

[4] Pereverzev A, Sewell TD. Terahertz normal mode relaxation in pentaerythritol tetranitrate[J]. J. Chem. Phys. 2011; 134: 014513.

DOI: 10.1063/1.3518423

Google Scholar

[5] Pereverzev A, Sewell TD. Terahertz spectrum and normal-mode relaxation in pentaerythritol tetranitrate: Effect of changes in bond-stretching force-field terms[J]. J. Chem. Phys. 2011; 134: 244502.

DOI: 10.1063/1.3600756

Google Scholar

[6] Whitley VH, Hooks DE, Ramos KJ, Pierce TH. Orientation Dependent Far-Infrared Terahertz Absorptions in Single Crystal Pentaerythritol Tetranitrate (PETN) Using Terahertz Time-Domain Spectroscopy[J]. J Phys Chem A. 2011; 115: 439.

DOI: 10.1021/jp108388c

Google Scholar

[7] Ge M, Wang W, Zhao H, Zhang Z, Yu X, Li W. Characterization of crystal transformation in the solid-state by terahertz time-domain spectroscopy[J]. Chem. Phys. Lett. 2007; 444: 355-8.

DOI: 10.1016/j.cplett.2007.07.028

Google Scholar

[8] Jin-Hai S, Jing-Ling S, Lai-Shun L, Xiao-Yu X, Hai-Bo L, Cun-Lin z. Experimental Investigation on Terahertz Spectra of Amphetamine Type Stimulants[J]. Chin. Phys. Lett. 2005; 22: 3176.

DOI: 10.1088/0256-307x/22/12/054

Google Scholar

[9] Ning L, Jingling S, Jinhai S, Laishun L, Xiaoyu X, Meihong L, et al. Study on the THz spectrum of methamphetamine[J]. Opt. Expre. 2005; 13: 6750.

DOI: 10.1364/opex.13.006750

Google Scholar

[10] Agarwal V, Huber GW, Conner WC, Auerbach SM. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures[J]. J. Chem. Phys. 2011; 135: 134506.

DOI: 10.1063/1.3646306

Google Scholar

[11] Olejniczak I, Pogorzelec-Glaser K. Lattice Dynamics through the Structural Phase Transition ind-Amphetamine Sulfate[J]. J. Phys. Chem. A. 2012; 116: 9854-62.

DOI: 10.1021/jp304843g

Google Scholar

[12] Hakey P, Ouellette W, Zubieta J, Korter T. Redetermination of (+)-methamphetamine hydrochloride at 90 K[J]. Acta. Crystal. Section E Structure Reports Online. 2008; 64: o940-o.

DOI: 10.1107/s1600536808011550

Google Scholar

[13] Frisch MJ. Gaussian 03. Revision B04-E01. Wallingford, CT: Gaussian. Inc.; 2003-(2004).

Google Scholar

[14] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B. 1988; 37: 785.

DOI: 10.1103/physrevb.37.785

Google Scholar

[15] Smith W, Forester TR. DL_POLY_2. 0: A general-purpose parallel molecular dynamics simulation package[J]. J Mol Graphics. 1996; 14: 136.

DOI: 10.1016/s0263-7855(96)00043-4

Google Scholar

[16] Mayo SL, Olafson BD, III WAG. DREIDING: A generic force field for molecular simulations[J]. J. Phys. Chem. 1990; 94: 8897.

DOI: 10.1021/j100389a010

Google Scholar

[17] Rychaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. J. Comput. Phys. 1977; 23: 327.

DOI: 10.1016/0021-9991(77)90098-5

Google Scholar

[18] McQuarrie DA. Statistical Mechanics[M]. Sausalito, California2000.

Google Scholar

[19] Praprotnik M, Janezic D, Mavri J. Temperature Dependence of Water Vibrational Spectrum: A Molecular Dynamics Simulation Study. J. Phys. Chem. A. 2004; 118: 11056.

DOI: 10.1021/jp046158d

Google Scholar

[20] Bornhauser P, Bougeard D. Intensities of the Vibrational Spectra of Siliceous Zeolites by Molecular Dynamics Calculations. I. Infrared Spectra[J]. J. Phys. Chem. B. 2001; 105: 36.

DOI: 10.1021/jp0014925

Google Scholar

[21] Bren U, Janežič Da. Individual degrees of freedom and the solvation properties of water[J]. J. Chem. Phys. 2012; 137: 024108.

Google Scholar