[1]
Kondow M, Uomi K, Niwa A, Kitatani T, Wtahiki S and Yazawa Y. GaInNAs: a novel material for long wavelength range laser diodes with excellent high temperature performance. Japan. J. Appl. Phys. Vol. 35, pp.1273-1275. (1996).
DOI: 10.1143/jjap.35.1273
Google Scholar
[2]
Seth Banka, Wonill Haa, Vincent Gambina, Mark Wisteya, Homan Yuena, Lynford Goddarda, Seongsin Kimb, James S. Harris Jr. a 1. 5 mm GaInNAs(Sb) lasers grown on GaAs by MBE, Journal of Crystal Growth vol. 251, p.367–371, (2003).
DOI: 10.1109/islc.2002.1041106
Google Scholar
[3]
Alistair F. Phillips, Stephen J. Sweeney, Alfred R. Adams, Peter J. A. Thijs, The Temperature Dependence of 1. 3- and 1. 5- m compressively Strained InGaAs(P) MQW Semiconductor Lasers, IEEE J. Select. Topics. Quantum. Electron. Vol. 5, p.401, (1999).
DOI: 10.1109/2944.788398
Google Scholar
[4]
Robert P. Sarzala, Lukasz Piskorski, Pawel Szczerbiak, Robert Kudrawiec, Wlodzimierz Nakwaski, An attempt to design long-wavelength (>2 μm) InP-based GaInNAs diode lasers, Appl Phys A, vol. 108, 521–528, (2012).
DOI: 10.1007/s00339-012-6977-4
Google Scholar
[5]
Calvez S., Laurand N., Poitras D., Gupta J.A., Leburn C.G., Brown C.T.A., Sibbett W., Sun H.D., Weda J., Burns D., Dawson M.D., Harkonen A., Jouhti T., Pessa M., Hopkinson M., GaInNAs(Sb) surface normal devices, Phys. Stat. Solidi A Vol 205, No. 1, pp.85-92, (2007).
DOI: 10.1002/pssa.200777460
Google Scholar
[6]
V. A. Odnoblyudov and C. W. Tu, Growth and fabrication of InGaNP-based yellow-red light emitting diodes, Appl. Phys. Lett. 89, 191107, (2006).
DOI: 10.1063/1.2374846
Google Scholar
[7]
James S. Harris Jr. The opportunities, successs and challenges for GaInNAsSb, J. Crys. Grow, Vol. 278, pp.3-17, (2005).
Google Scholar
[8]
S. Calvez et, J.M. Hopkins, S.A. Smith, A.H. Clark, R. Macaluso, H.D. Sun, M. D. Dawson, T. Houhti, M. Pessa, K. Gundogdu, K.C. Hall, T. F. Boggess, GaInNAs/GaAs Bragg-mirror-based structures for novel 1. 3um device applications, Journal of Crystal Growth, vol. 268, p.457, (2004).
DOI: 10.1016/j.jcrysgro.2004.04.072
Google Scholar
[9]
Kunert, B.; Klehr, A.; Reinhard, S.; Volz, K.; Stolz, W., Near room temperature electrical injection lasing for dilute nitride Ga(NAsP)/GaP quantum-well structures grown by metal organic vapour phase epitaxy, Electronics Letters, Volume: 42 , p.601, (2006).
DOI: 10.1049/el:20060295
Google Scholar
[10]
J. B. Héroux, X. Yang, and W. I. Wang, GaInNAs resonant-cavity-enhanced photodetector operating at 1. 3 μm, Appl. Phys. Lett. 75, 2716, (1999).
DOI: 10.1063/1.125126
Google Scholar
[11]
J. S. Ng, W. M. Soong, M. J. Steer, M. Hopkinson, J. P. R. David, J. Chamings, S. J. Sweeney, and A. R. Adams, Long wavelength bulk GaInNAs p−i−n photodiodes lattice matched to GaAs, J. Appl. Phys. 101, 064506 (2007).
DOI: 10.1063/1.2709622
Google Scholar
[12]
F. Dimroth, C. Baur, A.W. Bett, K. Volz, W. Stolz, Comparison of dilute nitride growth on a single- and 8×4-inch multiwafer MOVPE system for solar cell applications, Journal of Crystal Growth, vol, 272, p.726–731, (2004).
DOI: 10.1016/j.jcrysgro.2004.08.038
Google Scholar
[13]
David B. Jackrel, Seth R. Bank, Homan B. Yuen, Mark A. Wistey, James S. Harris, Jr., Aaron J. Ptak, Steven W. Johnston, Daniel J. Friedman, and Sarah R. Kurtz , Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy, J. Appl. Phys. 101, 114916 (2007).
DOI: 10.1063/1.2744490
Google Scholar
[14]
Y.S. Jalili, P.N. Stavrinou, J.S. Roberts and G. Parry. Electro-absorption and electro-refraction in InGaAsN quantum well structures. Electron. Lett. Vol. 38, pp., pp.343-344. (2002).
DOI: 10.1049/el:20020236
Google Scholar
[15]
V. Lordi, H.B. Yuen, S. R. Bank, J.S. Harris. Quantum-confined stark effect of GaInNAs(Sb) quantum wells at 1300-1600nm. Appl. Phys. lett. Vol. 85, pp.902-904, (2004).
DOI: 10.1063/1.1777825
Google Scholar
[16]
Jun-ichi Hashimoto, Kenji Koyama, Takashi Ishizuka1, Yukihiro Tsuji, Kousuke Fujii, Takashi Yamada2, and Tsukuru Katsuyama, Electroabsorption Effect of GaInNAs in Waveguiding Structure, Jpn. J. Appl. Phys. Vol. 48, 122403, (2009).
DOI: 10.1143/jjap.48.122403
Google Scholar
[17]
H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, Low-loss 1. 3 μm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers, Opt. Lett., vol. 27, p.2124–2126, (2002).
DOI: 10.1364/ol.27.002124
Google Scholar
[18]
A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, Low-Loss GaInNAs Saturable Bragg Reflector for Mode-Locking of a Femtosecond Cr4+ : Forsterite-Laser, IEEE Photo. Technol. Lett. Vol. 17, pp.2292-2294, (2005).
DOI: 10.1109/lpt.2005.857221
Google Scholar
[19]
C. Crombie, D. A. Walsh, W. Lu, S. Zhang, Z. Zhang, K. Kennedy, S. Calvez, W. Sibbett, and C.T.A. Brown, Electrically-controlled rapid femtosecond pulse duration switching and continuous picosecond pulse duration tuning in an ultrafast Cr4+: forsterite laser, Optics Express, Vol. 20, pp.18138-18144, (2012).
DOI: 10.1364/oe.20.018138
Google Scholar
[20]
W. Chen and T. G. Anderson, Quantum-confined Stark Shift for Differently Shaped Quantum Wells. Semicond. Sci, Technol. Vol. 7 pp.828-836, (1992).
DOI: 10.1088/0268-1242/7/6/016
Google Scholar
[21]
M. Fukuoka, T. Toya, Y. Sawai, T. Arakawa, K. Tada. Electrorefractive Effects in GaInNAs/GaAs Five-layer Asymmetric Coupled Quantum Well. Japan. J. Appl. Phys. Vol. 48, 04C154, (2009).
DOI: 10.1143/jjap.48.04c154
Google Scholar
[22]
W. Shan, W Walukiewicz, and J.W. Ager III. Phys. Rew. Lett. Vol. 82 p.1221. (1999).
Google Scholar
[23]
Y. N. Qiu, J. M. Rorison. Appl. Phys. Lett. Vol. 82, p.081111. (2005).
Google Scholar
[24]
Y.N. Qiu, J. M. Rorison, H. D. Sun, S. Calvez, M. D. Dawson, A. C. Bryce. Appl. Phys. Lett. Vol. 87, p.231112, (2005).
Google Scholar
[25]
Qiu, Y. N.; Sun, H. D.; Rorison, J. M, Quantum-well intermixing influence on GaInNAs/GaAs quantum-well laser gain: theoretical study, Semicond. Sci. Technol, Vol. 23, p.095010, (2008).
DOI: 10.1088/0268-1242/23/9/095010
Google Scholar
[26]
F.H. Pollak and H. Shen. Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices. Materials Science and Engineering R10, 275, (1993).
DOI: 10.1016/0927-796x(93)90004-m
Google Scholar
[27]
J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J.C. Harmand and M. Hammar. Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells, J. Phys.: Condens. Matter, vol. 16, pp. S3071–S3094, (2004).
DOI: 10.1088/0953-8984/16/31/006
Google Scholar