Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures

Article Preview

Abstract:

The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

622-627

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kondow M, Uomi K, Niwa A, Kitatani T, Wtahiki S and Yazawa Y. GaInNAs: a novel material for long wavelength range laser diodes with excellent high temperature performance. Japan. J. Appl. Phys. Vol. 35, pp.1273-1275. (1996).

DOI: 10.1143/jjap.35.1273

Google Scholar

[2] Seth Banka, Wonill Haa, Vincent Gambina, Mark Wisteya, Homan Yuena, Lynford Goddarda, Seongsin Kimb, James S. Harris Jr. a 1. 5 mm GaInNAs(Sb) lasers grown on GaAs by MBE, Journal of Crystal Growth vol. 251, p.367–371, (2003).

DOI: 10.1109/islc.2002.1041106

Google Scholar

[3] Alistair F. Phillips, Stephen J. Sweeney, Alfred R. Adams, Peter J. A. Thijs, The Temperature Dependence of 1. 3- and 1. 5- m compressively Strained InGaAs(P) MQW Semiconductor Lasers, IEEE J. Select. Topics. Quantum. Electron. Vol. 5, p.401, (1999).

DOI: 10.1109/2944.788398

Google Scholar

[4] Robert P. Sarzala, Lukasz Piskorski, Pawel Szczerbiak, Robert Kudrawiec, Wlodzimierz Nakwaski, An attempt to design long-wavelength (>2 μm) InP-based GaInNAs diode lasers, Appl Phys A, vol. 108, 521–528, (2012).

DOI: 10.1007/s00339-012-6977-4

Google Scholar

[5] Calvez S., Laurand N., Poitras D., Gupta J.A., Leburn C.G., Brown C.T.A., Sibbett W., Sun H.D., Weda J., Burns D., Dawson M.D., Harkonen A., Jouhti T., Pessa M., Hopkinson M., GaInNAs(Sb) surface normal devices, Phys. Stat. Solidi A Vol 205, No. 1, pp.85-92, (2007).

DOI: 10.1002/pssa.200777460

Google Scholar

[6] V. A. Odnoblyudov and C. W. Tu, Growth and fabrication of InGaNP-based yellow-red light emitting diodes, Appl. Phys. Lett. 89, 191107, (2006).

DOI: 10.1063/1.2374846

Google Scholar

[7] James S. Harris Jr. The opportunities, successs and challenges for GaInNAsSb, J. Crys. Grow, Vol. 278, pp.3-17, (2005).

Google Scholar

[8] S. Calvez et, J.M. Hopkins, S.A. Smith, A.H. Clark, R. Macaluso, H.D. Sun, M. D. Dawson, T. Houhti, M. Pessa, K. Gundogdu, K.C. Hall, T. F. Boggess, GaInNAs/GaAs Bragg-mirror-based structures for novel 1. 3um device applications, Journal of Crystal Growth, vol. 268, p.457, (2004).

DOI: 10.1016/j.jcrysgro.2004.04.072

Google Scholar

[9] Kunert, B.; Klehr, A.; Reinhard, S.; Volz, K.; Stolz, W., Near room temperature electrical injection lasing for dilute nitride Ga(NAsP)/GaP quantum-well structures grown by metal organic vapour phase epitaxy, Electronics Letters, Volume: 42 , p.601, (2006).

DOI: 10.1049/el:20060295

Google Scholar

[10] J. B. Héroux, X. Yang, and W. I. Wang, GaInNAs resonant-cavity-enhanced photodetector operating at 1. 3 μm, Appl. Phys. Lett. 75, 2716, (1999).

DOI: 10.1063/1.125126

Google Scholar

[11] J. S. Ng, W. M. Soong, M. J. Steer, M. Hopkinson, J. P. R. David, J. Chamings, S. J. Sweeney, and A. R. Adams, Long wavelength bulk GaInNAs p−i−n photodiodes lattice matched to GaAs, J. Appl. Phys. 101, 064506 (2007).

DOI: 10.1063/1.2709622

Google Scholar

[12] F. Dimroth, C. Baur, A.W. Bett, K. Volz, W. Stolz, Comparison of dilute nitride growth on a single- and 8×4-inch multiwafer MOVPE system for solar cell applications, Journal of Crystal Growth, vol, 272, p.726–731, (2004).

DOI: 10.1016/j.jcrysgro.2004.08.038

Google Scholar

[13] David B. Jackrel, Seth R. Bank, Homan B. Yuen, Mark A. Wistey, James S. Harris, Jr., Aaron J. Ptak, Steven W. Johnston, Daniel J. Friedman, and Sarah R. Kurtz , Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy, J. Appl. Phys. 101, 114916 (2007).

DOI: 10.1063/1.2744490

Google Scholar

[14] Y.S. Jalili, P.N. Stavrinou, J.S. Roberts and G. Parry. Electro-absorption and electro-refraction in InGaAsN quantum well structures. Electron. Lett. Vol. 38, pp., pp.343-344. (2002).

DOI: 10.1049/el:20020236

Google Scholar

[15] V. Lordi, H.B. Yuen, S. R. Bank, J.S. Harris. Quantum-confined stark effect of GaInNAs(Sb) quantum wells at 1300-1600nm. Appl. Phys. lett. Vol. 85, pp.902-904, (2004).

DOI: 10.1063/1.1777825

Google Scholar

[16] Jun-ichi Hashimoto, Kenji Koyama, Takashi Ishizuka1, Yukihiro Tsuji, Kousuke Fujii, Takashi Yamada2, and Tsukuru Katsuyama, Electroabsorption Effect of GaInNAs in Waveguiding Structure, Jpn. J. Appl. Phys. Vol. 48, 122403, (2009).

DOI: 10.1143/jjap.48.122403

Google Scholar

[17] H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, Low-loss 1. 3 μm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers, Opt. Lett., vol. 27, p.2124–2126, (2002).

DOI: 10.1364/ol.27.002124

Google Scholar

[18] A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, Low-Loss GaInNAs Saturable Bragg Reflector for Mode-Locking of a Femtosecond Cr4+ : Forsterite-Laser, IEEE Photo. Technol. Lett. Vol. 17, pp.2292-2294, (2005).

DOI: 10.1109/lpt.2005.857221

Google Scholar

[19] C. Crombie, D. A. Walsh, W. Lu, S. Zhang, Z. Zhang, K. Kennedy, S. Calvez, W. Sibbett, and C.T.A. Brown, Electrically-controlled rapid femtosecond pulse duration switching and continuous picosecond pulse duration tuning in an ultrafast Cr4+: forsterite laser, Optics Express, Vol. 20, pp.18138-18144, (2012).

DOI: 10.1364/oe.20.018138

Google Scholar

[20] W. Chen and T. G. Anderson, Quantum-confined Stark Shift for Differently Shaped Quantum Wells. Semicond. Sci, Technol. Vol. 7 pp.828-836, (1992).

DOI: 10.1088/0268-1242/7/6/016

Google Scholar

[21] M. Fukuoka, T. Toya, Y. Sawai, T. Arakawa, K. Tada. Electrorefractive Effects in GaInNAs/GaAs Five-layer Asymmetric Coupled Quantum Well. Japan. J. Appl. Phys. Vol. 48, 04C154, (2009).

DOI: 10.1143/jjap.48.04c154

Google Scholar

[22] W. Shan, W Walukiewicz, and J.W. Ager III. Phys. Rew. Lett. Vol. 82 p.1221. (1999).

Google Scholar

[23] Y. N. Qiu, J. M. Rorison. Appl. Phys. Lett. Vol. 82, p.081111. (2005).

Google Scholar

[24] Y.N. Qiu, J. M. Rorison, H. D. Sun, S. Calvez, M. D. Dawson, A. C. Bryce. Appl. Phys. Lett. Vol. 87, p.231112, (2005).

Google Scholar

[25] Qiu, Y. N.; Sun, H. D.; Rorison, J. M, Quantum-well intermixing influence on GaInNAs/GaAs quantum-well laser gain: theoretical study, Semicond. Sci. Technol, Vol. 23, p.095010, (2008).

DOI: 10.1088/0268-1242/23/9/095010

Google Scholar

[26] F.H. Pollak and H. Shen. Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices. Materials Science and Engineering R10, 275, (1993).

DOI: 10.1016/0927-796x(93)90004-m

Google Scholar

[27] J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J.C. Harmand and M. Hammar. Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells, J. Phys.: Condens. Matter, vol. 16, pp. S3071–S3094, (2004).

DOI: 10.1088/0953-8984/16/31/006

Google Scholar