Characteristics of Phase Behavior Transformation of Milk Protein-Polysaccharide Multicomponent Systems with κ-Carrageenan

Article Preview

Abstract:

To meet the needs of consumers desiring for weight-loss food, investigation on phase characteristics of milk protein-konjac glucomannan multicomponent systems with κ-carrageenan was carried out to simulate healthy ice cream product. Methods of rheology, light scattering and microscopy were used to examine the mechanism underlying the transformation of phase behavior. Addition of κ-carrageenan (0%) evidently showed extensive phase separation that casein micelles concentrated into an irregular discrete phase. A high degree of emulsification of spherical micelle droplets occurring in the continuous serum phase prevented bulk phase separation when the κ-carrageenan concentration increased (0.025%, 0.05%). The analysis of rheological characteristics revealed that multicomponent systems with higher κ-carrageenan concentration were more viscous and showed higher thixotropy behavior due to intense interactions between κ-carrageenan and casein micelles. Frequency independence of G and G was also greatly enhanced as concentration of κ-carrageenan increased. Moreover, differences of size distribution evidenced the structure formation of systems in presence of κ-carrageenan. The joint effects of κ-carrageenan helix aggregation and the interaction between casein micelles and κ-carrageenan were contributed to phase behavior transformation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

1589-1594

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Marshall, R. T. and Arbuckle, W. S. (1996). Ice cream. 5th edition. (pp.71-80, 164-199). Chapman & Hall, New York.

Google Scholar

[2] Goff, H. D. & Caldwell, K. B. (1991). Stabilizers in ice cream: How do they work? Modern Dairy. 70(3), 14-15.

Google Scholar

[3] Kato, K., & Matsuda, K. (1969). Studies on the chemical structure of konjac mannan. Agricultural and Biological Chemistry, 33, 1446-1453.

DOI: 10.1271/bbb1961.33.1446

Google Scholar

[4] Maekaji, K. (1974).  The mechanism of gelation of konjac mannan. Agricultural and Biological Chemistry, 38(2), 315-321.

DOI: 10.1080/00021369.1974.10861161

Google Scholar

[5] Nishinari, K. (1987). Food hydrocolloids in Japan/ G. O. Phillips, D. J. Wedlock, & P. A. Williams (Eds. ), Gumsand Stabilisers for the Food Industry 4, IRL PRESS, Oxford, UK., 373-390.

Google Scholar

[6] Bourriot, S., Garnier, C., & Doublier, J. -L. (1999). Phase separation, rheology and structure of micellar casein-galactomannan mixtures. International Dairy Journal, 9(3–6), 353-357.

DOI: 10.1016/s0958-6946(99)00087-4

Google Scholar

[7] Tuinier, R., ten Grotenhuis, E., & de Kruif, C. G. (2000). The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloids, 14(1), 1-7.

DOI: 10.1016/s0268-005x(99)00039-9

Google Scholar

[8] De Bont, P. W., van Kempen, G. M. P., & Vreeker, R. (2002). Phase separation in milk protein and amylopectin mixtures. Food Hydrocolloids, 16(2), 127-138.

DOI: 10.1016/s0268-005x(01)00070-4

Google Scholar

[9] Vega, C., & Goff, H. D. (2005). Phase separation in soft-serve ice cream mixes: rheology and microstructure. International Dairy Journal, 15(3), 249-254.

DOI: 10.1016/j.idairyj.2004.07.007

Google Scholar

[10] Musampa, R. M., Alves, M. M., & Maia, J. M. (2007). Phase separation, rheology and microstructure of pea protein–kappa-carrageenan mixtures. Food Hydrocolloids, 21(1), 92-99.

DOI: 10.1016/j.foodhyd.2006.02.005

Google Scholar

[11] Tolstoguzov, V. B. (1991). Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocolloids, 4(6), 429-468.

DOI: 10.1016/s0268-005x(09)80196-3

Google Scholar

[12] McClements, D. J. (1999). Food emulsions: principles, practice and technology. (pp.207-208). CRC Press, London.

Google Scholar

[13] Snoeren, T. H. M. (1976). Kappa-carrageenan. A study on its physico-chemical properties, sol-gel transition and interactions with milk proteins. Ph. D. Thesis. Wageningen. The Netherlands.

Google Scholar

[14] Schorsch, C., Jones, M. G., & Norton, I. T. (2000). Phase behaviour of pure micellar casein/κ-carrageenan systems in milk salt ultrafiltrate. Food Hydrocolloids, 14(4), 347-358.

DOI: 10.1016/s0268-005x(00)00011-4

Google Scholar

[15] Arbuckle, W. S. (1986). Ice cream: 4th ed. (pp.232-257). AVI Publishing Co., Westport. CT.

Google Scholar

[16] Spagnuolo, P. A., Dalgleish, D. G., Goff, H. D., & Morris, E. R. (2005). Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocolloids, 19(3), 371-377.

DOI: 10.1016/j.foodhyd.2004.10.003

Google Scholar

[17] Snoeren, T. H. M., Payens, T. A. J., Jeunink, J., & Both, P. (1975). Electrostatic interaction between k-carrageenan and k-casein. Milchwissenschaft, 30, 393–396.

Google Scholar

[18] Dalgleish, D. G., & Morris, E. R. (1988). Interactions between carrageenans and casein micelles: electrophoretic and hydrodynamic properties of the particles. Food Hydrocolloids, 2(4), 311-320.

DOI: 10.1016/s0268-005x(88)80028-6

Google Scholar