Influence of Astaxanthin on Pearl Oyster Pinctada martensii

Article Preview

Abstract:

In the study, through the addition astaxanthin into the bait for the pearl oyster Pinctada martensii for 3 months, we studied the accumulation and existence form of astaxanthin in pearl oyster through qualitative and quantitative analysis which adopted High Performance Liquid Chromatography method; the transmission of astaxanthin in shells was detected by Micro-Raman spectrometry. The results showed: 6.870±1.356μg/g of astaxanthin existed in the control group of Pinctada martensii, and 74.799±5.907μg/g of astaxanthin existed in the experimental group, some of them were existent in the form of astaxanthin esters. Weak carotenoid characteristic peak occurred in the control group, while the carotenoid characteristic peaks intensity enhanced obviously in the experimental group, which illustrated remarkable increase of carotenoid content in the shell. These findings will not only provide the basis for colorful pearl cultivation via food-borne transmission but also lay a foundation for further artificial regulation and control of pearl color.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

889-894

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Snow, A. Pring, P. Self, D. Losic, J. Shapter. American Mineralogist, Vol. 89(2004), pp.1353-1358.

DOI: 10.2138/am-2004-1001

Google Scholar

[2] C. Hedegaard, J. O. Bardeau, D. Chateigner. Journal of Molluscan Studies, Vol. 72(2006), No. 2, pp.157-162.

DOI: 10.1093/mollus/eyi062

Google Scholar

[3] E. L. Mc Ginty, B. S. Evans, J. U. U. Taylor, D. R. Jerry. Aquaculture, Vol. 302(2010), pp.175-181.

Google Scholar

[4] K. Jiro, W. Onishi. Pearl Research (Eds) (Agriculture Press, China 1966 pp: 294-302. ).

Google Scholar

[5] P. Christiansen, J. Glette, O. Lie, O. J. Torrissen, R. Waagbo. Journal of Fish Disease, Vol. 18(1995), No. 4, pp.317-328.

Google Scholar

[6] R. Czerpak, B. Czeozuga. Marine Biology, Vol. 3(1969), pp.122-125.

Google Scholar

[7] M. S. Dreon, M. Ceolín, H. Heras. Archives of Biochemistry and Biophysics, Vol. 460(2007), No. 1, pp.107-112.

DOI: 10.1016/j.abb.2006.12.033

Google Scholar

[8] G. I. Page, S. J. Davies. Comparative Biochemistry Physiology, Vol. 143A (2006), No. 1, pp.125-132.

Google Scholar

[9] M. Tsushima, T. Mastuno. Comparative Biochemistry and Physiology. Vol. 96B (1990), No. 4, pp.801-810.

Google Scholar

[10] M. Cusack, G. Curry, H. Clegg, G. Abbott. Comparative Biochemistry and Physiology, Vol. 102B (1992). No. 1, pp.93-95.

Google Scholar

[11] G. S. Zhang, X. D. Xie, Y. Wang. Acta Mineralogica Sinica, Vol. 21(2001), No. 3, pp.389-392. (In Chinese).

Google Scholar

[12] G. S. Zhang: The Microstructure of Nacre and China's In Situ Study of Carotenoid (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China 2001).

Google Scholar

[13] J. Urmos, S. K. Sharma, F. T. Mackenzie. American Mineralogist, Vol. 76(1991), pp.641-646.

Google Scholar

[14] N. Wade, K. C. Goulter, K. J. Wilson, M. G. Hall, B. M. Degnan. Comparative Biochemistry and Physiology, Vol. 141B (2005), No. 3, pp.307-313.

Google Scholar

[15] L. Rimai, M. E. Heyde, D. Gill. Journal of the American Chemical Society, Vol. 95(1973), No. 14, pp.4493-4501.

Google Scholar

[16] L. C. Hoskins, V. Alexander. Analytical Chemistry, Vol. 49(1977), No. 6, pp.695-697.

Google Scholar