[1]
V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Mater. Sci. Eng. A 299 (2001) 59-67.
DOI: 10.1016/s0921-5093(00)01411-8
Google Scholar
[2]
G.G. Yapici, I. Karaman, H.J. Maier, Mechanical flow anisotropy in severely deformed pure titanium, Mat. Sci. Eng. A 434 (2006) 294-302.
DOI: 10.1016/j.msea.2006.06.082
Google Scholar
[3]
C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon, Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion, Wear 280-281 (2012) 28-35.
DOI: 10.1016/j.wear.2012.01.012
Google Scholar
[4]
V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, Mater. Sci. Eng. A 343 (2003) 43-50.
DOI: 10.1016/s0921-5093(02)00366-0
Google Scholar
[5]
G.G. Yapici, I. Karaman, Z.P. Luo, H. Rack, Microstructure and mechanical properties of severely deformed powder processed Ti-6Al-4V using equal channel angular extrusion. Scripta. Mater. 49 (2003) 1021-1027.
DOI: 10.1016/s1359-6462(03)00484-6
Google Scholar
[6]
L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Flow stress behavior of commercial pure titanium sheet during warm tensile deformation, Mater. Design 34 (2012) 179-184.
DOI: 10.1016/j.matdes.2011.07.060
Google Scholar
[7]
S.V. Sajadifar, M. Ketabchi, M. Nourani, Modeling of mechanical characteristics in hot deformation of 4130 steel, Steel Res. Int. 82 (2011) 934-939.
DOI: 10.1002/srin.201100024
Google Scholar
[8]
X. Chun, Z. Wen-feng, Transformation mechanism and mechanical properties of commercially pure titanium, T. Nonferr. Metal Soc. 20 (2010) 2162-2167.
Google Scholar
[9]
Z. Zeng, S. Jonsson, Y. Zhang, Constitutive equations for pure titanium at elevated temperatures, Mater. Sci. Eng. A 505 (2009) 116-119.
DOI: 10.1016/j.msea.2008.11.017
Google Scholar
[10]
J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009) 2748–2756.
DOI: 10.1016/j.actamat.2009.02.033
Google Scholar
[11]
G. Purcek, G.G. Yapici, I. Karaman, H.J. Maier, Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium, Mater. Sci. Eng. A 528 (2011) 2303-2308.
DOI: 10.1016/j.msea.2010.11.021
Google Scholar
[12]
I. Karaman, G.G. Yapici, Y.I. Chumlyakov, I.V. Kireeva, Deformation twinning in difficult-to-work alloys during severe plastic deformation, Mater. Sci. Eng. A 410-411 (2005) 243-247.
DOI: 10.1016/j.msea.2005.08.021
Google Scholar
[13]
G.G. Yapici, C.N. Tome, I.J. Beyerlein, I. Karaman, S.C. Vogel, C. Liu, Plastic flow anisotropy of pure zirconium after severe plastic deformation at room temperature, Acta Mater. 57 (2009) 4855-4865.
DOI: 10.1016/j.actamat.2009.06.050
Google Scholar
[14]
E.I. Poliak, J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int. 43 (2003) 684-691.
DOI: 10.2355/isijinternational.43.684
Google Scholar
[15]
K. Dehghani, A.A. Khamei, Hot deformation behavior of 60Nitinol (Ni60 wt%–Ti40 wt%) alloy: Experimental and computational studies, Mater. Sci. Eng. A 527 (2010) 684-690.
DOI: 10.1016/j.msea.2009.08.059
Google Scholar
[16]
H. Asgharzadeh, H.S. Kim, A. Simchi, Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy, Mater. Charact. 75 (2013) 108-114.
DOI: 10.1016/j.matchar.2012.10.007
Google Scholar