Investigating on the Reverse Transformation of Martensite to Austenite and Pseudoelastic Behavior in Ultrafine-Grained Fe-10Ni-7Mn (wt %) Steel Processed by Heavy Cold Rolling

Article Preview

Abstract:

Fe-10Ni-7Mn (wt. %) steel is a member of ultrahigh strength steels which shows good ductility in the solution annealed condition and excellent age hardenability. In the current research, this alloy was subjected to heavy cold rolling in which the reverse transformation of martensitic to austenite was brought about. From the XRD, DSC and dilatometric analyses, it is resulted that after 60 % cold rolling the austenite phase may be formed by displacive mechanism. Stability of austenite at room temperature is referred to the ultrafine/nanograin size of austenite after deformation which prevents the austenite to martensite transformation. The presence of ultrafine/nanoaustenite formed by displacive mechanism leads to the observation of new mechanical properties during cyclic tensile test. This behavior is known as pseudoelastic phenomenon. In this behavior, during loading-unloading tensile cycle, the shape of the specimen return to its original configuration with a hysteresis loop in its path to the zero strain point.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation , Prog. Mater. Sci., 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Longdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scripta Mater., 44 (2001) 2753-2758.

DOI: 10.1016/s1359-6462(01)00955-1

Google Scholar

[3] M. Nili Ahmadabadi, H. Shirazi , H. Ghasemi-Nanesa, S. Hossein Nedjad, B. Poorganji, T. Furuhara, Role of severe plastic deformation on the formation of nanograins and nano-sized precipitates in Fe–Ni–Mn steel, Materials & Design, 32 (2011).

DOI: 10.1016/j.matdes.2011.02.018

Google Scholar

[4] R. Z. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[5] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, A. K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature, 398 (1999) 684-686.

DOI: 10.1038/19486

Google Scholar

[6] S. Hossein Nedjad, M. R. Movaghar Garabagh, M. Nili Ahmadabadi, H. Shirazi, Effect of further alloying on the microstructure and mechanical properties of an Fe–10Ni–5Mn maraging steel, Mater. Sci. Eng. A, 473 (2008) 249–253.

DOI: 10.1016/j.msea.2007.05.093

Google Scholar

[7] N. H. Heo, Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy, Scripta Mater., 34 (1996) 1517-1522.

DOI: 10.1016/1359-6462(96)00032-2

Google Scholar

[8] S. J. Kim, C. M. Wayman, Strengthening behavior and embrittlement phenomena in Fe-Ni-Mn-(Ti) maraging Alloys, Mater. Sci. Eng. A, 207 (1996) 22-29.

DOI: 10.1016/0921-5093(95)10004-0

Google Scholar

[9] H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad, S. H. Pishbin, Ductility enhancement in ultrafine-grained Fe–Ni–Mn martensitic steel by stress-induced reverse transformation, Mater. Sci. Eng. A, 527 (2010) 7552-7556.

DOI: 10.1016/j.msea.2010.08.028

Google Scholar

[10] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci., 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[11] H. Otsuka, K. Nakajima, T. Maruyama, Superelastic behavior of Fe-Mn-Si-Cr shape memory alloy coil, Mater. Trans. JIM, 41 (2000) 547-549.

DOI: 10.2320/matertrans1989.41.547

Google Scholar

[12] J. H. Yang, H. Chen, C. M. Wayman, Metall. Trans. A, Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part I. shape memory behavior, 23 (1992) 1431-1437.

DOI: 10.1007/bf02647326

Google Scholar

[13] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Mater. Sci. Eng. A 158 (2004) 387–389.

DOI: 10.1016/j.msea.2004.01.059

Google Scholar

[14] Z. Guo, W. Sha, D. Li, Quantification of phase transformation kinetics of 18 wt. % Ni C250 maraging steel, Mater. Sci. Eng. A, 373 (2004) 10-20.

DOI: 10.1016/j.msea.2004.01.040

Google Scholar

[15] D. A. Porter, K. E. Easterling, transformation in Metals and Alloys, Second ed., Chapman & Hall, London, (1992).

Google Scholar