[1]
R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation , Prog. Mater. Sci., 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[2]
A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Longdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scripta Mater., 44 (2001) 2753-2758.
DOI: 10.1016/s1359-6462(01)00955-1
Google Scholar
[3]
M. Nili Ahmadabadi, H. Shirazi , H. Ghasemi-Nanesa, S. Hossein Nedjad, B. Poorganji, T. Furuhara, Role of severe plastic deformation on the formation of nanograins and nano-sized precipitates in Fe–Ni–Mn steel, Materials & Design, 32 (2011).
DOI: 10.1016/j.matdes.2011.02.018
Google Scholar
[4]
R. Z. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[5]
S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, A. K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature, 398 (1999) 684-686.
DOI: 10.1038/19486
Google Scholar
[6]
S. Hossein Nedjad, M. R. Movaghar Garabagh, M. Nili Ahmadabadi, H. Shirazi, Effect of further alloying on the microstructure and mechanical properties of an Fe–10Ni–5Mn maraging steel, Mater. Sci. Eng. A, 473 (2008) 249–253.
DOI: 10.1016/j.msea.2007.05.093
Google Scholar
[7]
N. H. Heo, Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy, Scripta Mater., 34 (1996) 1517-1522.
DOI: 10.1016/1359-6462(96)00032-2
Google Scholar
[8]
S. J. Kim, C. M. Wayman, Strengthening behavior and embrittlement phenomena in Fe-Ni-Mn-(Ti) maraging Alloys, Mater. Sci. Eng. A, 207 (1996) 22-29.
DOI: 10.1016/0921-5093(95)10004-0
Google Scholar
[9]
H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad, S. H. Pishbin, Ductility enhancement in ultrafine-grained Fe–Ni–Mn martensitic steel by stress-induced reverse transformation, Mater. Sci. Eng. A, 527 (2010) 7552-7556.
DOI: 10.1016/j.msea.2010.08.028
Google Scholar
[10]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci., 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[11]
H. Otsuka, K. Nakajima, T. Maruyama, Superelastic behavior of Fe-Mn-Si-Cr shape memory alloy coil, Mater. Trans. JIM, 41 (2000) 547-549.
DOI: 10.2320/matertrans1989.41.547
Google Scholar
[12]
J. H. Yang, H. Chen, C. M. Wayman, Metall. Trans. A, Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part I. shape memory behavior, 23 (1992) 1431-1437.
DOI: 10.1007/bf02647326
Google Scholar
[13]
S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Mater. Sci. Eng. A 158 (2004) 387–389.
DOI: 10.1016/j.msea.2004.01.059
Google Scholar
[14]
Z. Guo, W. Sha, D. Li, Quantification of phase transformation kinetics of 18 wt. % Ni C250 maraging steel, Mater. Sci. Eng. A, 373 (2004) 10-20.
DOI: 10.1016/j.msea.2004.01.040
Google Scholar
[15]
D. A. Porter, K. E. Easterling, transformation in Metals and Alloys, Second ed., Chapman & Hall, London, (1992).
Google Scholar