Nanocrystallization and Mechanical Properties of Rapidly Solidified Amorphous Al86Ni6Y6Ce2 (at.%) Alloy

Article Preview

Abstract:

Primary crystallization of amorphous Al86Ni6Y6Ce2 (at.%) alloy was investigated through differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and X-ray diffraction. Moreover, nanoindentation analysis was performed to relate the hardness to the structure of the alloy. The kinetic parameters of the first crystallization process were determined by Kissinger method. The average amount of Avrami exponent (n=1.7±0.21) was concluded the primary crystallization occurred through three dimensional diffusion-controlled growth with decreasing rate. The α-Al nanoparticles 58 nm in size homogeneously embedded in the glassy matrix were formed during primary crystallization. Significant changes in the hardness occurred due to the change of the crystalline structures. The hardness of 7.30±0.58 GPa was obtained by annealing at 618 K with a microstructure of Al nanoparticles and Al3Ni intermetallic compound in an amorphous matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-24

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gogebakan, M. Okumus, Structure and Crystallization of Amorphous Al-Ni-Si Alloy, ‏ Mater. Sci. -Pol. 27 (2009) 79-87.

Google Scholar

[2] ‏ Y. Ouyang, J. Zhang, H. Chen, S. Liao, X. Zhong, Crystallization study of amorphous Al82Fe5Ni5Ce8 alloy, J. Alloys Compd. 454 (2008) 359–363.

DOI: 10.1016/j.jallcom.2006.12.088

Google Scholar

[3] W.J. Botta, C. Triveno Rios, R.D. Sa Lisboa, A.R. de Andrade, M.F. de Oliveira, C. Bolfarini, C.S. Kiminami, Crystallisation behaviours of Al-based metallic glasses: Compositional and topological aspects , ‏ J. Alloys Compd. 483 (2009) 89–93.

DOI: 10.1016/j.jallcom.2008.08.122

Google Scholar

[4] J. Latuch, T. Kulik, H. Dimitrov, Nanocrystallization of Al–Mm–Ni–(Fe, Co) alloys , ‏ Mater. Sci. Eng., A 375–377 (2004) 956–960.

DOI: 10.1016/j.msea.2003.10.098

Google Scholar

[5] Z. Huang, J. Li, Q. Rao, Y. Zhou, Dependences of the crystallization behavior of Al–Ni–La amorphous alloys on La and Ni contents , J. Non-Cryst. Solids 354 (2008) 1671–1677.

DOI: 10.1016/j.jnoncrysol.2007.10.017

Google Scholar

[6] Z.H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou, Effects of La Content On The Glass Transition and Crystallization Process of Al-Ni-La Amorphous Alloys, Intermetallics 15 (2007) 1139-1146.

DOI: 10.1016/j.intermet.2007.02.001

Google Scholar

[7] S.H. Wang, X.F. Bian, H.R. Wang, Crystallization of amorphous Al84. 2Ni10La2. 1Ce2. 8Pr0. 3Nd0. 6 alloy, Mater. Lett. 58 (2004) 539– 542.

Google Scholar

[8] Y. He, G.M. Dougherty, G.J. Shiflet, S.J. Poon, Uniqe Metallic Glass Formability and Ultra High Tensile Strength in Al-Ni-Fe-Gd Alloys, Acta Mater. 41 (1993) 337-343.

DOI: 10.1016/0956-7151(93)90064-y

Google Scholar

[9] C. Triveño Rios, S. Suriñach, M.D. Baró, C. Bolfarini, W.J. Botta, C.S. Kiminami, Glass forming ability of the Al–Ce–Ni system,J. Non-Cryst. Solids 354 (2008) 4874–4877.

DOI: 10.1016/j.jnoncrysol.2008.04.035

Google Scholar

[10] P.J. Squire, I.T.H. Chang, Development of rapidly solidified Al–Y–Ni-based alloys , ‏ Mater. Sci. Eng., A 449–451 (2007) 1009–1012.

DOI: 10.1016/j.msea.2006.02.274

Google Scholar

[11] ‏ Kissinger. H.E., J. Res. Natl. Bur. Stand., Sect. A 57 (1956) 217-221.

Google Scholar

[12] Kissinger. H.E., Anal. Chem., 29‏ (1957)‏ 1702-1706.

Google Scholar

[13] S.A. Hasheminezhad, M.H. Sabzevar, S. Sahebian, Non-isothermal Crystallization Kinetics of Co67Fe4Cr7Si8B14 Amorphous Alloy , ‏ Mater. Sci. Forum 706-709 (2012) 1311-1317.

DOI: 10.4028/www.scientific.net/msf.706-709.1311

Google Scholar