High Loading of SiO2 Nanoparticles to Investigate Optical and Mechanical Properties of Polyurethane Open Cell

Article Preview

Abstract:

In this research the composition of polyurethane open cell (PUOC) with two concentrations of SiO2 nanoparticles (1 and 2wt. %) have been prepared. Optical microscopy imaging, watering uptake, FTIR and Raman spectroscopy of the synthesized samples were measured. The optical microscopy imaging of samples showed differences in the appearance of matrix by applying of different amount of SiO2 nanoparticles. Variations of the water uptake of specimens were related to the function of SiO2 nanoparticles (NPs) and their concentrations. The degree of phase separation and the hydrogen bonding index in samples were evaluated in terms of their FTIR spectroscopy data. The apparent and real densities of foams were measured and then total porosity, open porosity and close porosity of samples were calculated. According to creating voids in polyurethane, the apparent and real density has different behavior by adding of SiO2 nanoparticles (NPs). The open porosity of samples is increased by adding the amount of nanoparticles but the close and total porosity are decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Yıldız, M.O. Seydibeyoglu, F.S. Guner, Polyurethane–zinc borate composites with high oxidative stability and flame retardancy, Polym. Degrad. Stab. 94 (2009) 1072–1075.

DOI: 10.1016/j.polymdegradstab.2009.04.006

Google Scholar

[2] L. Bistricic, G. Baranovic, M. Leskovac, E.G. Bajsic, Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane–silica nanocomposites, Eur. Polym. J. 46 (2010) 1975–(1987).

DOI: 10.1016/j.eurpolymj.2010.08.001

Google Scholar

[3] Y. Zhu, X. Zhao, Z. Wang, D. An, Y. Ma, S. Guan, Y. Du, B. Zhou, X. Gao, Synthesis and characterization of polyurethane/SiO2 nanocomposites, Appl. Surf. Sci. 257 (2011) 4719–4724.

DOI: 10.1016/j.apsusc.2010.12.138

Google Scholar

[4] D.W. Hatchett, G. Kodippili, J. M. Kinyanjui, F. Benincasa, L. Sapochak, FTIR analysis of thermally processed PU foam, Polym. Degrad. Stab. 87 (2005) 555-561.

DOI: 10.1016/j.polymdegradstab.2004.10.012

Google Scholar

[5] S. Pandey, S.B. Mishra, Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications, J. Sol-Gel Sci. Technol. 59 (2011) 73–94.

DOI: 10.1007/s10971-011-2465-0

Google Scholar

[6] J. Rouquerolt, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids, Pure & Appl. Chern. 66 (1994) 1739-1758.

DOI: 10.1351/pac199466081739

Google Scholar

[7] H. Zhou, Y. Chen, H. Fan, H. Shi, Z. Luo, B. Shi, The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation, J. Memb. Sci. 318 (2008) 71–78.

DOI: 10.1016/j.memsci.2008.02.024

Google Scholar

[8] Z. Luo, R.Y. Hong, H.D. Xie, W.G. Feng, One-step synthesis of functional silica nanoparticles for reinforcement of polyurethane coatings, Powder Technol. 218 (2012) 23–30.

DOI: 10.1016/j.powtec.2011.11.023

Google Scholar

[9] M. Sadeghi, M.A. Semsarzadeh, M. Barikani, M. Pourafshari Chenar, Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes, J. Memb. Sci. 376 (2011) 188–195.

DOI: 10.1016/j.memsci.2011.04.021

Google Scholar

[10] S. Parnell, K. Min, M. Cakmak, Kinetic studies of polyurethane polymerization with Raman spectroscopy, Polymer 44 (2003) 5137-5144.

DOI: 10.1016/s0032-3861(03)00468-3

Google Scholar

[11] R.C.S. Araujo, V.M.D. Pasa, B.N. Melo, Effects of biopitch on the properties of flexible polyurethane foams, Eur. Polym. J. 41 (2005) 1420-1428.

DOI: 10.1016/j.eurpolymj.2004.12.021

Google Scholar

[12] J.L. Rivera-Armenta, T. Heinze, A. M. Mendoza-Martinez, New polyurethane foams modified with cellulose derivatives, Eur. Polym. J. 40 (2004) 2803-2812.

DOI: 10.1016/j.eurpolymj.2004.07.015

Google Scholar

[13] O.M. Primera-Pedrozo, G.D.M. Rodriguez, J. Castellanos, H. Felix-Rivera, O. Resto, S.P. Hernandez-Rivera, Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions, Spectrochim Acta A Mol Biomol Spectrosc. 87 (2012).

DOI: 10.1016/j.saa.2011.11.012

Google Scholar

[14] M. Gnyba, M. Jedrzejewska-Szczerska, M. Keranen, J. Suhonen, Sol-gel materials investigation by means of raman spectroscopy, Proceedings, XVII IMEKO World Congress, Dubrovnik, Croatia (2003) 237-240.

Google Scholar

[15] E.R. Jisha, G. Balamurugan, P. Selvakumar, N. Edison, R. Rathiga, Synthesis Of Silica Nanoparticle By Chemical Method And Their Antibacterial Activity, Int. J. PharmTech Res., 4 (2012) 1323-1331.

Google Scholar

[16] C.Y. Bai, X.Y. Zhang, J.B. Dai, C.Y. Zhang, Water resistance of the membranes for UV curable waterborne polyurethane dispersions, Prog. Org. Coating. 59 (2007) 331-336.

DOI: 10.1016/j.porgcoat.2007.05.003

Google Scholar

[17] C. Torres-Sanchez , J.R. Corney, Effects of ultrasound on polymeric foam porosity Ultrason. Sonochem. 15 (2008) 408-415.

DOI: 10.1016/j.ultsonch.2007.05.002

Google Scholar

[18] S. Basirjafari, R. Malekfar, S. Esmaielzadeh Khadem, Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams, J. Appl. Phys. 112 (2012) 104312.

DOI: 10.1063/1.4765726

Google Scholar