A Novel Severe Plastic Deformation Process for Shear Deformation and Grain Refinement of Bulk Materials

Article Preview

Abstract:

A novel experimental technique called "Multi-Axial Incremental Shearing" (MAIS) is proposed to impose plastic shear strain to the bulk metallic materials. The evolution of strain during MAIS processing of AA1100 alloy has been studied by employing 3D finite element modeling. The commercial code DEFORM was used to analyze the deformation and evolution of the working load with rams displacement as the material passes through the die. Simulation results showed that a large amount of accumulative strain can be applied to the sample without change of its dimensions. In order to verify the metal flow and microstructure characteristics, Sn-1wt.% Bi alloy specimens as the representative of the soft metals have been deformed by MAIS process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-19

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[2] I. Sabirov, M.Y. Murashkin, R. Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A 560 (2013) 1-24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881–981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[4] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[5] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng. A 503 (2009) 14–17.

DOI: 10.1016/j.msea.2007.12.055

Google Scholar

[6] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process, Acta mater. 47 (1999) 579-583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[7] D. H. Shin, J. -J. Park, Y. -S. Kim, K. -T. Park, Constrained groove pressing and its application to grain refinement of aluminum, Mater. Sci. Eng. A 328 (2002) 98–103.

DOI: 10.1016/s0921-5093(01)01665-3

Google Scholar

[8] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M. J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[9] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[10] M.H. Parsa, M. Naderi, M. Nili-Ahmadabadi, H. Asadpour, The evolution of strain during equal channel angular pressing, Int. J. Mater. Form. 1 (2008) 93–96.

DOI: 10.1007/s12289-008-0036-x

Google Scholar

[11] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scr. Mater. 35 (1996) 143-146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar

[12] S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, B. Clausen, Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion, Mater. Sci. Eng. A 382 (2004) 217–236.

DOI: 10.1016/j.msea.2004.04.067

Google Scholar

[13] G.J. Raaba, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform, Mater. Sci. Eng. A 382 (2004) 30–34.

DOI: 10.1016/j.msea.2004.04.021

Google Scholar

[14] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The shearing characteristics associated with equal-channel angular pressing, Mater. Sci. Eng. A 257 (1998) 328–332.

DOI: 10.1016/s0921-5093(98)00750-3

Google Scholar

[15] R. Mahmudi, R. Alizadeh, A.R. Geranmayeh, Enhanced superplasticity in equal-channel angularly pressed Sn–5Sb alloy, Scr. Mater. 64 (2011) 521-524.

DOI: 10.1016/j.scriptamat.2010.11.030

Google Scholar