[1]
Y. Yang, H. W. Xiang, L. Tian, H. Wang, C. H. Zhang, Z. C. Tao, Y. Y. Xu, B. Zhong, and Y. W. Li, Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2, Appl. Catal. A: General, 284, (2005), 105-122.
DOI: 10.1016/j.apcata.2005.01.025
Google Scholar
[2]
K. Srirangan, L. Akawi, M. Moo-Young, and C. P. Chou, Towards sustainable production of clean energy carriers from biomass resources, Appl. Energy, 100, (2012), 172-186.
DOI: 10.1016/j.apenergy.2012.05.012
Google Scholar
[3]
C. Pirola, C. Bianchi, A. Di Michele, S. Vitali, and V. Ragaini, Fischer Tropsch and Water Gas Shift chemical regimes on supported iron-based catalysts at high metal loading, Catal. Commun., 10, (2009), 823-827.
DOI: 10.1016/j.catcom.2008.12.006
Google Scholar
[4]
J. Niemantsverdriet, A. Van der Kraan, W. Van Dijk, and H. Van der Baan, Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Moessbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements, J. of Physical Chem., 84, (1980), 3363-3370.
DOI: 10.1021/j100462a011
Google Scholar
[5]
Y. Yang, H. W. Xiang, Y. Y. Xu, L. Bai, and Y. W. Li, Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis, Appl. Catal. A: General, 266, (2004), 181-194.
DOI: 10.1016/j.apcata.2004.02.018
Google Scholar
[6]
S. Li, A. Li, S. Krishnamoorthy, and E. Iglesia, Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts, Catal. letters, 77, (2001), 197-205.
Google Scholar
[7]
R. B. Anderson, H. Kölbel, and M. Rálek, The Fischer-Tropsch Synthesis, 16: Academic Press New York, 1984.
Google Scholar
[8]
M. Luo and B. H. Davis, Fischer–Tropsch synthesis: activation of low-alpha potassium promoted iron catalysts, Fuel Processing Technology, 83, (2003), 49-65.
DOI: 10.1016/s0378-3820(03)00077-8
Google Scholar
[9]
H. Hayakawa, H. Tanaka, and K. Fujimoto, Studies on precipitated iron catalysts for Fischer–Tropsch synthesis, Appl. Catal. A: General, 310, (2006), 24-30.
DOI: 10.1016/j.apcata.2006.04.045
Google Scholar
[10]
J. Benziger and R. Madix, The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe (100), Surface science, 94, (1980), 119-153.
DOI: 10.1016/0039-6028(80)90160-0
Google Scholar
[11]
H. W. Pennline, M. F. Zarochak, J. M. Stencel, and J. R. Diehl, Activation and promotion studies in a mixed slurry reactor with an iron-manganese Fischer-Tropsch catalyst, Industrial & Engineering Chemistry Research, 26, (1987), 595-601.
DOI: 10.1021/ie00063a029
Google Scholar
[12]
V. R. Rao Pendyala, G. Jacobs, J. C. Mohandas, M. Luo, W. Ma, M. K. Gnanamani, and B. H. Davis, Fischer–Tropsch synthesis: Attempt to tune FTS and WGS by alkali promoting of iron catalysts, Appl. Catal. A: General, 389, (2010), 131-139.
DOI: 10.1016/j.apcata.2010.09.018
Google Scholar
[13]
J. L. Rankin and C. H. Bartholomew, Effects of potassium and calcination pretreatment on the adsorption and chemical/physical properties of Fe/SiO2, J. Catal., 100, (1986), 533-540.
DOI: 10.1016/0021-9517(86)90126-0
Google Scholar
[14]
A. P. Raje, R. J. O'Brien, and B. H. Davis, Effect of potassium promotion on iron-based catalysts for Fischer–Tropsch synthesis, J. of Catal., 180, (1998), 36-43.
DOI: 10.1006/jcat.1998.2259
Google Scholar
[15]
G. Zhao, C. Zhang, S. Qin, H. Xiang, and Y. Li, Effect of interaction between potassium and structural promoters on Fischer–Tropsch performance in iron-based catalysts, J. of Molecular Catal. A: Chemical, 286, (2008), 137-142.
DOI: 10.1016/j.molcata.2008.02.019
Google Scholar
[16]
H. Wan, B. Wu, C. Zhang, H. Xiang, and Y. Li, Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis, J. of Mol. Catal. A: Chem., 283, (2008), 33-42.
DOI: 10.1016/j.molcata.2007.12.013
Google Scholar
[17]
W. Jozwiak, E. Kaczmarek, T. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A: General, 326, (2007), 17-27.
DOI: 10.1016/j.apcata.2007.03.021
Google Scholar
[18]
R. J. O'Brien, L. Xu, R. L. Spicer, and B. H. Davis, Activation study of precipitated iron Fischer-Tropsch catalysts, Energy Fuels,10, (1996), 921-926.
DOI: 10.1021/ef9502315
Google Scholar
[19]
Y. Jin and A. K. Datye, Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction, J. of Catal., 196, (2000), 8-17.
DOI: 10.1006/jcat.2000.3024
Google Scholar
[20]
N. Lohitharn, J. G. Goodwin Jr, and E. Lotero, Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters, J. of Catal., 255, (2008), pp.104-113.
DOI: 10.1016/j.jcat.2008.01.026
Google Scholar
[21]
Y. Lu and P. Zhou, Impact of promoters on the performance of the skeleton iron catalyst in the application to Fischer-Tropsch synthesis process, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 49, (2004), 660-661.
Google Scholar