Effect of Parameters on Lattice Thermal Conductivity in Germanium Nanowires

Article Preview

Abstract:

Modified Callaway's theory was used to calculate lattice thermal conductivity (LTC) of Germanium nanowires. Results are compared to those of experimental values of the temperature dependence of LTC for nanowire diameters of 62, 19, and 15nm. In this calculation, both longitudinal and transverse modes are taken into account. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Effect of parameters, phonon confinement and imperfections in limiting thermal conductivity for the nanowires under considerations are investigated. The suppression in thermal conductivity of these nanowires is arise from electron-phonon scattering and phonon-boundary scattering at low temperatures, while at high temperatures is due to imperfections and intrinsic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.Cahill, W.Ford, K.Goodson, G.Mahan, A.Majumdar, H.Maris, R.Merlin, and S.Phillpot; 'Nanoscale thermal transport', J.Appl. Phys. 93 (2003) 793-819.

DOI: 10.1063/1.1524305

Google Scholar

[2] A.Shakouri, 'Nanoscale Thermal Transport on a Chip', Proc. IEEE 94 (2006) 1613-1638.

Google Scholar

[3] Y.Dong, G.Yu, M.Alpine, W. Lu, and C.Lieber,'Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches', Nano Lett. 8 ( 2008) 386-391.

DOI: 10.1021/nl073224p

Google Scholar

[4] A.Boukai, Y.Bunimovich, J.Tahir-Kheli, J-K.Yu, W.Goddard,'Silicon nanowires as efficient thermoelectric materials' ,Nature, 451 (2008) 168-171.

DOI: 10.1038/nature06458

Google Scholar

[5] M.Wingert, Z. Chen, E.Dechaumphai, J.Moon, Ji-Hun Kim, J.Xiang, and R.Chen,'Thermal Conductivity of Ge and Ge–Si Core–Shell Nanowires in the Phonon Confinement Regime', Nano. Lett.11 (2011) 5507-5513.

DOI: 10.1021/nl203356h

Google Scholar

[6] J.Callaway,'Model for Lattice Thermal Conductivity at Low Temperatures',Phys. Rev.113 (1959) 1046-1051.

DOI: 10.1103/physrev.113.1046

Google Scholar

[7] D.Morelli, J.Heremans, and G.Slack,'Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V ', Phys. Rev. B 66 (2002) 195304-195309.

DOI: 10.1103/physrevb.66.195304

Google Scholar

[8] S.M. Mamanda, M.S. Omar , A.Muhammad,' Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires Mater. Res. Bull. 47 (2012) 1264-1272.

DOI: 10.1016/j.materresbull.2011.12.025

Google Scholar

[9] J.Zou and A.Balandin,'Phonon heat conduction in a semiconductor nanowire' Appl. Phys. 89 (2001) 2932-2938.

DOI: 10.1063/1.1345515

Google Scholar

[10] M.Asen-Palmer, K.Bartkowski, E.Gmelin, M.Cardona, A.Zhernov, A.Inyushkin, A. Taldenkov, V.Ozhogin, K.Itoh, and E.Haller,'Thermal conductivity of germanium crystals with different isotopic compositions' Phys. Rev. B 56 (1997) 9431-9447.

DOI: 10.1103/physrevb.56.9431

Google Scholar

[11] Q.Jiang and C.Yang,'Size Effect on the Phase Stability of Nanostructures ', Current nanoscience, 4 (2008) 179-200.

Google Scholar

[12] K.Brunner,'Si/Ge Nanostructures', Rep. Prog. Phys. 65 (2002) 27-72.

Google Scholar

[13] M.Chandrasekhar and F.Pollak, ' Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs', Phys. Rev.B 15 (1977) 2127-2144.

DOI: 10.1103/physrevb.15.2127

Google Scholar

[14] G.Guisbiers, M.Kazan, M.Wautelet, and S.Pereira,'Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures', J. Phys. Chem. C 112 (2008) 4097-4103.

DOI: 10.1021/jp077371n

Google Scholar

[15] A.Gomez, D.Cockayne, P.Hirsch, and V.Vitek, 'Dissociation of near-screw dislocations in germanium and silicon', Phil. Mag. 31 (1975) 105-113.

DOI: 10.1080/14786437508229289

Google Scholar

[16] C.Yang, M.X. Xiao, W.Li, Q.Jiang, 'Size effects on Debye temperature, Einstein temperature, and volume thermal expansion of nanocrystals', Solid State Commun. 139 (2006) 148-152.

DOI: 10.1016/j.ssc.2006.05.035

Google Scholar

[17] S.Barman and G.P. Srivastava, 'Thermal conductivity of suspended GaAs nanostructures: Theoretical study', Phy. Rev.B 73 (2006) 205308-205313.

Google Scholar

[18] J.Zou, 'Lattice thermal conductivity of freestanding gallium nitride nanowires', J Appl. Phys. 108 (2010) 034324-034330.

DOI: 10.1063/1.3463358

Google Scholar

[19] G.Gu, M.Burghard, G.T. Kim, G.Dusberg, P.Chiu, V.Krstic, S.Roth and W. Q. Han,' Growth and electrical transport of germanium nanowires', J. Appl. Phys. 90 (2001) 5747-5751.

DOI: 10.1063/1.1413495

Google Scholar

[20] J.Blackemore, Semiconducting and other major properties of gallium arsenide', J. Appl. Phys. 53 (1982) R123-R181.

DOI: 10.1063/1.331665

Google Scholar

[21] J.Zou, D.Kotchetkov, A.Balandin, D.Florescu, F.Pollak, 'Thermal conductivity of GaN films: Effects of impurities and dislocations', J.Appl.Phys. 92 (2002) 2534-2539.

DOI: 10.1063/1.1497704

Google Scholar

[22] L.Girifalco, 'Statistical Mechanics of Solids', Oxford University Press, Sec.(5.2), (2000).

Google Scholar

[23] T.Barron,'Grüneisen parameters for the equation of state of solids', Ann. Phys. 1 (1957) 77-90.

Google Scholar

[24] M.Omar and H.Taha,' Lattice dislocation in Si nanowires', Physica B 404 (2009) 5203-5206.

DOI: 10.1016/j.physb.2009.08.304

Google Scholar

[25] M.S. Omar,' Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials ', Mater. Res. Bull. 47 (2012) 3518-3522.

DOI: 10.1016/j.materresbull.2012.06.067

Google Scholar