[1]
K. Burridge, M. Chrzanowska-Wodnicka, Focal adhesions, contractility and signaling, Annu. Rev. Cell Dev. Biol., 12 (1996) 463-519.
DOI: 10.1146/annurev.cellbio.12.1.463
Google Scholar
[2]
C.F. Soon, M. Youseffi, R.F. Berends, N. Blagden, M.C.T. Denyer, Development of a novel liquid crystal based cell traction force transducer system, Biosens. Bioelectron., 39 (2013) 14-20.
DOI: 10.1016/j.bios.2012.06.032
Google Scholar
[3]
C.F. Soon, M. Youseffi, N. Blagden, R. Berends, S.B. Lobo, F.A. Javid, M. Denyer, Characterization and biocompatibility study of nematic and cholesteryl liquid crystals in: Proc. WCE, 2009, pp.1872-1875.
Google Scholar
[4]
C.F. Soon, M. Youseffi, N. Blagden, M. Denyer, Effects of an enzyme, depolymerization and polymerization drugs to cells adhesion and contraction on lyotropic liquid crystals, Proc. WCE, 1 (2010) 556-561.
Google Scholar
[5]
C.F. Soon, N. Nayan, M. Youseffi, N. Blagden, M.C.T. Denyer, Effects of Trypsin and Cytochalasin-B Treatments to Cell Traction Forces, in: P.D.F. Ibrahim (Ed.) International Conference of Biomedical Engineering and Sciences, IEEE-EMBS, Langkawi, Malaysia, 2012.
DOI: 10.1109/iecbes.2012.6498084
Google Scholar
[6]
C.F. Soon, M. Youseffi, N. Blagden, M. Denyer, Measurement and mapping of cell traction forces on liquid crystal based force transducer, in: International conference on computational biosciences, IASTED, Cambridge university, 2011.
DOI: 10.2316/p.2011.742-013
Google Scholar
[7]
H. Declercq, N.V.d. Vreken, E.D. Maeyerb, R. Verbeeck, E. Schacht, L.D. Ridder, M. Cornelissen, Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source, Biomaterials, 25 (2004) 757-768.
DOI: 10.1016/s0142-9612(03)00580-5
Google Scholar
[8]
H. Watanabe, C.A. Mackay, E. Kislauskis, A. Mason-Savas, S.C. Marks Jr., Ultrastructural evidence of abnormally short and maldistributed actin stress fibers in osteopetrotic (toothless) rat osteoblasts in situ after detergent perfusion, Tissue Cell, 29 (1997) 89-98.
DOI: 10.1016/s0040-8166(97)80075-4
Google Scholar
[9]
A.J. Singer, A.F. Richard, A.F. Clark, Cutaneous wound healing, The New England Journal of Medicine, (1999) 738-746.
Google Scholar
[10]
P. Boukamp, R. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, N. Fusenig, Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line, J. Cell Biol., 106 (1988) 761-771.
DOI: 10.1083/jcb.106.3.761
Google Scholar
[11]
M. Takeo, Skin biomechanics from microscopic viewpoint: mechanical properties and their measurement of horny layer, living epidermis, and dermis, Fagr. J., 35 (2007) 36-40.
Google Scholar
[12]
F.M. Hendriks, Mechanical behaviour of human epidermal and dermal layers invivo, Technische Universiteit Eindhoven, Eindhoven, 2005.
Google Scholar
[13]
A.D. Bershadsky, N.Q. Balaban, B. Geiger, Adhesion-dependent cell mechanosensitivity, Annual Review of Cell Developmental Biology, 19 (2003) 677-695.
DOI: 10.1146/annurev.cellbio.19.111301.153011
Google Scholar
[14]
B. Geiger, A. Bershadsky, Exploring the neighborhood: adhesion-coupled cell mechanosensors, Cell, 110 (2002) 139-142.
DOI: 10.1016/s0092-8674(02)00831-0
Google Scholar
[15]
S. Tojkander, G. Gateva, P. Lappalainen, Actin stress fibers-assembly, dynamics and biological roles, J. Cell Sci., 125 (2012) 1-10.
DOI: 10.1242/jcs.098087
Google Scholar
[16]
R.I. Sharma, J.G. Snedeker, Paracrine interactions between mesenchymal stem cells affect substrate drive differentiation toward tendon and bone phenotypes, PLoS One, 7 (2012) e31504.
DOI: 10.1371/journal.pone.0031504
Google Scholar
[17]
A.J. Engler, M.A. Griffin, S. Sen, C.G. Bönnemann, H.L. Sweeney, D.E. Discher, Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments, Cell. Biol., 166 (2004b) 877-887.
DOI: 10.1083/jcb.200405004
Google Scholar
[18]
J.H.-C. Wang, J.-S. Lin, Cell traction force and measurement methods, Biomech. Model. Mechanobiol., 6 (2007) 361-371.
DOI: 10.1007/s10237-006-0068-4
Google Scholar
[19]
J. Stanley, P. Hawley-Nelson, M. Yaah, G.R. Martin, S. Katz, Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells, J. Invest. Dermatol, 78 (1982) 456-459.
DOI: 10.1111/1523-1747.ep12510132
Google Scholar
[20]
E.A. O'Toole, Extracellular matrix and keratinocyte migration, Clin. Exp. Dermatol., 26 (2001) 525-530.
Google Scholar
[21]
W. Li, G. Henry, J. Fan, B. Bandyopadhyay, K. Pang, W. Garner, M. Chen, D. Woodley, Signals that initiate, augment, and provide directionality for human keratinocyte motility, J. Invest. Dermatol, 123 (2004) 622-633.
DOI: 10.1111/j.0022-202x.2004.23416.x
Google Scholar
[22]
A. Engler, L. Bacakova, C. Newman , A. Hategan, M. Griffin, D. Discher, Substrate compliance versus ligand density in cell on gel responses, Biophys. J., 86 (2004a) 617-628.
DOI: 10.1016/s0006-3495(04)74140-5
Google Scholar
[23]
K. Owaribe, R. Kodama, G. Eguchi, Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo, Cell. Biol., 90 (1981) 507-514.
DOI: 10.1083/jcb.90.2.507
Google Scholar
[24]
P. Hotulainen, P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, J. Cell Biol., 173 (2006) 383-394.
DOI: 10.1083/jcb.200511093
Google Scholar