Cell Traction Force Mapping in MG63 and HaCaTs

Article Preview

Abstract:

The ability of a cell to adhere and transmit traction forces to a surface reveals the cytoskeleton integrity of a cell. Shear sensitive liquid crystals were discovered with new function in sensing cell traction force recently. This liquid crystal has been previously shown to be non-toxic, linear viscoelastic and sensitive to localized exerted forces. This paper reports the possibility of extending the application of the proposed liquid crystal based cell force sensor in sensing traction forces of osteoblast-like (MG-63) and human keratinocyte (HaCaT) cell lines exerted to the liquid crystal sensor. Incorporated with cell force measurement software, force distributions of both cell types were represented in force maps. For these lowly contractile cells, chondrocytes expressed regular forces (10 – 90 nN, N = 200) around the circular cell body whereas HaCaT projected forces (0 – 200 nN, N = 200) around the perimeter of poly-hedral shaped body. These forces are associated with the organisation of the focal adhesion expressions and stiffness of the LC substrate. From the results, liquid crystal based cell force sensor system is shown to be feasible in detecting forces of both MG63 and HaCaT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Burridge, M. Chrzanowska-Wodnicka, Focal adhesions, contractility and signaling, Annu. Rev. Cell Dev. Biol., 12 (1996) 463-519.

DOI: 10.1146/annurev.cellbio.12.1.463

Google Scholar

[2] C.F. Soon, M. Youseffi, R.F. Berends, N. Blagden, M.C.T. Denyer, Development of a novel liquid crystal based cell traction force transducer system, Biosens. Bioelectron., 39 (2013) 14-20.

DOI: 10.1016/j.bios.2012.06.032

Google Scholar

[3] C.F. Soon, M. Youseffi, N. Blagden, R. Berends, S.B. Lobo, F.A. Javid, M. Denyer, Characterization and biocompatibility study of nematic and cholesteryl liquid crystals in: Proc. WCE, 2009, pp.1872-1875.

Google Scholar

[4] C.F. Soon, M. Youseffi, N. Blagden, M. Denyer, Effects of an enzyme, depolymerization and polymerization drugs to cells adhesion and contraction on lyotropic liquid crystals, Proc. WCE, 1 (2010) 556-561.

Google Scholar

[5] C.F. Soon, N. Nayan, M. Youseffi, N. Blagden, M.C.T. Denyer, Effects of Trypsin and Cytochalasin-B Treatments to Cell Traction Forces, in: P.D.F. Ibrahim (Ed.) International Conference of Biomedical Engineering and Sciences, IEEE-EMBS, Langkawi, Malaysia, 2012.

DOI: 10.1109/iecbes.2012.6498084

Google Scholar

[6] C.F. Soon, M. Youseffi, N. Blagden, M. Denyer, Measurement and mapping of cell traction forces on liquid crystal based force transducer, in: International conference on computational biosciences, IASTED, Cambridge university, 2011.

DOI: 10.2316/p.2011.742-013

Google Scholar

[7] H. Declercq, N.V.d. Vreken, E.D. Maeyerb, R. Verbeeck, E. Schacht, L.D. Ridder, M. Cornelissen, Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source, Biomaterials, 25 (2004) 757-768.

DOI: 10.1016/s0142-9612(03)00580-5

Google Scholar

[8] H. Watanabe, C.A. Mackay, E. Kislauskis, A. Mason-Savas, S.C. Marks Jr., Ultrastructural evidence of abnormally short and maldistributed actin stress fibers in osteopetrotic (toothless) rat osteoblasts in situ after detergent perfusion, Tissue Cell, 29 (1997) 89-98.

DOI: 10.1016/s0040-8166(97)80075-4

Google Scholar

[9] A.J. Singer, A.F. Richard, A.F. Clark, Cutaneous wound healing, The New England Journal of Medicine, (1999) 738-746.

Google Scholar

[10] P. Boukamp, R. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, N. Fusenig, Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line, J. Cell Biol., 106 (1988) 761-771.

DOI: 10.1083/jcb.106.3.761

Google Scholar

[11] M. Takeo, Skin biomechanics from microscopic viewpoint: mechanical properties and their measurement of horny layer, living epidermis, and dermis, Fagr. J., 35 (2007) 36-40.

Google Scholar

[12] F.M. Hendriks, Mechanical behaviour of human epidermal and dermal layers invivo, Technische Universiteit Eindhoven, Eindhoven, 2005.

Google Scholar

[13] A.D. Bershadsky, N.Q. Balaban, B. Geiger, Adhesion-dependent cell mechanosensitivity, Annual Review of Cell Developmental Biology, 19 (2003) 677-695.

DOI: 10.1146/annurev.cellbio.19.111301.153011

Google Scholar

[14] B. Geiger, A. Bershadsky, Exploring the neighborhood: adhesion-coupled cell mechanosensors, Cell, 110 (2002) 139-142.

DOI: 10.1016/s0092-8674(02)00831-0

Google Scholar

[15] S. Tojkander, G. Gateva, P. Lappalainen, Actin stress fibers-assembly, dynamics and biological roles, J. Cell Sci., 125 (2012) 1-10.

DOI: 10.1242/jcs.098087

Google Scholar

[16] R.I. Sharma, J.G. Snedeker, Paracrine interactions between mesenchymal stem cells affect substrate drive differentiation toward tendon and bone phenotypes, PLoS One, 7 (2012) e31504.

DOI: 10.1371/journal.pone.0031504

Google Scholar

[17] A.J. Engler, M.A. Griffin, S. Sen, C.G. Bönnemann, H.L. Sweeney, D.E. Discher, Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments, Cell. Biol., 166 (2004b) 877-887.

DOI: 10.1083/jcb.200405004

Google Scholar

[18] J.H.-C. Wang, J.-S. Lin, Cell traction force and measurement methods, Biomech. Model. Mechanobiol., 6 (2007) 361-371.

DOI: 10.1007/s10237-006-0068-4

Google Scholar

[19] J. Stanley, P. Hawley-Nelson, M. Yaah, G.R. Martin, S. Katz, Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells, J. Invest. Dermatol, 78 (1982) 456-459.

DOI: 10.1111/1523-1747.ep12510132

Google Scholar

[20] E.A. O'Toole, Extracellular matrix and keratinocyte migration, Clin. Exp. Dermatol., 26 (2001) 525-530.

Google Scholar

[21] W. Li, G. Henry, J. Fan, B. Bandyopadhyay, K. Pang, W. Garner, M. Chen, D. Woodley, Signals that initiate, augment, and provide directionality for human keratinocyte motility, J. Invest. Dermatol, 123 (2004) 622-633.

DOI: 10.1111/j.0022-202x.2004.23416.x

Google Scholar

[22] A. Engler, L. Bacakova, C. Newman , A. Hategan, M. Griffin, D. Discher, Substrate compliance versus ligand density in cell on gel responses, Biophys. J., 86 (2004a) 617-628.

DOI: 10.1016/s0006-3495(04)74140-5

Google Scholar

[23] K. Owaribe, R. Kodama, G. Eguchi, Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo, Cell. Biol., 90 (1981) 507-514.

DOI: 10.1083/jcb.90.2.507

Google Scholar

[24] P. Hotulainen, P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, J. Cell Biol., 173 (2006) 383-394.

DOI: 10.1083/jcb.200511093

Google Scholar