Formation of Carbon Nanotubes from Methane Decomposition: Effect of Concentration of Fe3O4 on the Diameters Distributions

Article Preview

Abstract:

Fe3O4 was used to synthesize narrow diameter of carbon nanotubes (CNTs). The effect of concentration of Fe3O4 on the diameters of carbon nanotubes (CNTs) synthesized by methane decomposition at 1000°C was investigated. We used conventional impregnation method to prepare Fe3O4/MgO catalysts. The results show that the concentration of Fe3O4 greatly affects the diameter distributions of produced CNTs. The CNTs formed by Fe3O4/MgO catalysts, with the mole ratio set at 0.25:9.75 and 1:9 had diameter of 3.23 ± 1.71 and 49.04 ± 33.62nm, respectively, showing that a decrease in concentration of Fe3O4 yields smaller diameter and narrower diameter distribution. A growth model explaining tip-growth and base-growth mechanism is proposed for understanding formation of CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678-680.

Google Scholar

[3] D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74 (1999) 3803-3808.

DOI: 10.1063/1.124185

Google Scholar

[4] A. Walt, W.A. de Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179-1180.

Google Scholar

[5] W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Appl. Phys. Lett. 75 (1999) 873-875.

Google Scholar

[6] S. Fan, M.G. Chapline, N.M. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283 (1999) 512-514.

DOI: 10.1126/science.283.5401.512

Google Scholar

[7] J.S. Suh, J.S. Lee, Appl. Phys. Lett. 75 (1999) 2047-2049.

Google Scholar

[8] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos et al., Nature 388 (1997) 52-55.

DOI: 10.1038/40369

Google Scholar

[9] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105-1107.

Google Scholar

[10] J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395 (1998) 878-881.

Google Scholar

[11] S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, H.C. Shih, Appl. Phys. Lett. 74 (1999) 197-199.

Google Scholar

[12] H. Hou, A.K. Schaper, Z. Jun, F. Weller, A. Greiner, Chem. Mater. 15 (2003) 580-585.

Google Scholar

[13] H. Ago, T. Komatusu, Ohshima, S., Kuriki, Y., Yumura, M., Appl. Phys. Lett. 77 (2000) 79-81.

Google Scholar

[14] C. Singh, M.S.P. Shaffer, A.H. Windle, Carbon 41 (2003) 359-368.

Google Scholar

[15] H. Ago, S. Imamura, T. Okazaki, T. Saito, M. Yumura, M. Tsuji, J. Phys. Chem. B 109 (2005) 10035-10041.

DOI: 10.1021/jp050307q

Google Scholar

[16] F. Ding, A. Rosén, K. Boltn, J. Chem. Phys. 121 (2004) 2775-2779.

Google Scholar

[17] J.Y. Raty, F. Gygi, G. Galil, Phys. Rev. Lett. 95 (2005) 096103.

Google Scholar

[18] Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma, Thin Solid Films 286 (2004) 464-465.

DOI: 10.1016/j.tsf.2004.06.045

Google Scholar

[19] M. Ishida, H. Hongo, F. Nihey, Y. Ochiai, Jpn. J. Appl. Phys. 43 (2004) L1356-L1359.

DOI: 10.1143/jjap.43.l1356

Google Scholar

[20] D. Kondo, S. Sato, Y. Awano, Chem. Phys. Lett. 422 (2006) 481-487.

Google Scholar

[21] W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li, Appl. Catal. A 258 (2004) 121-124.

Google Scholar

[22] L.B. Avdeeva, D.I. Kochubey, Sh.K. Shaikhutdinov, Appl. Catal. A. 177 (1999) 43-51.

Google Scholar

[23] H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260 (1996) 471-475.

DOI: 10.1016/0009-2614(96)00862-7

Google Scholar

[24] M. Pérez-Cabero, I. Rodríguez-Ramos, A. Guerrero-Ruíz, J. Catal. 215 (2003) 305-316.

Google Scholar

[25] P. Nikolaev, M. Bronikowski, R. Bradley, F. Rohmund, D. Colbert, K.A. Smith, Chem. Phys. Lett. 313 (1999) 91-97.

Google Scholar

[26] V. Vinciguerra, , F. Buonocore, G. Panzera, L. Occhipinti, Nanotechnology 14 (2003) 655-660.

DOI: 10.1088/0957-4484/14/6/317

Google Scholar

[27] R. Seidel, G.S. Duesberg, E. Unger, A.P. Graham, M. Liebau, F. Kreupl, J. Phys. Chem. B 108 (2004) 1888-1893.

DOI: 10.1021/jp037063z

Google Scholar

[28] A. Gohier, C.P. Ewels, T.M. Minea, M.A. Djouadi, Carbon 46 (2008) 1331-1338.

DOI: 10.1016/j.carbon.2008.05.016

Google Scholar

[29] R.T.K. Baker, Carbon 27 (1989) 315-323.

Google Scholar

[30] H. Kanzow, A. Ding, Phys. Rev. B 60 (1999) 11180-11186.

Google Scholar

[31] G.G. Tibbetts, J. Cryst. Growth 66 (1984) 632-638.

Google Scholar

[32] J.R. Rostrup-Nielsen, D.L. Trimm, J. Catal. 48 (1977) 155-165.

Google Scholar

[33] S. Helveg, L.C. Carlos, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, A.P. Frank, J. K. Nørskov, Nature 427 (2004) 426-429.

DOI: 10.1038/nature02278

Google Scholar