[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363 (1993) 605-607.
DOI: 10.1038/363605a0
Google Scholar
[3]
S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.
DOI: 10.1038/363603a0
Google Scholar
[4]
J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296 (1998) 195-202.
DOI: 10.1016/s0009-2614(98)01024-0
Google Scholar
[5]
T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Catalytic growth of single-walled notubes by laser vaporization, Chem. Phys. Lett. 243 (1995) 49-54.
DOI: 10.1016/0009-2614(95)00825-o
Google Scholar
[6]
A. Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, L. Schlapbach, Hydrogen storage in carbon nanostructures, Int. J. Hydrogen Energy 27 (2002) 203-212.
DOI: 10.1016/s0360-3199(01)00108-2
Google Scholar
[7]
H.F. Cheng, Y.M. Tsau, T.Y. Chang, T.S. Lai, T.F. Kuo, I.N. Lin, Electron field emission properties of carbon nanotubes grown on tungsten wire. Physica B 323 (2002) 158-160.
DOI: 10.1016/s0921-4526(02)00887-6
Google Scholar
[8]
H. Dai, Carbon Nanotubes: Synthesis, Integration, and Properties. Accounts Chem. Res. 35 (2002) 1035-1044.
DOI: 10.1021/ar0101640
Google Scholar
[9]
S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360 (2002) 229-234.
DOI: 10.1016/s0009-2614(02)00838-2
Google Scholar
[10]
K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Konya, J.B. Nagy, Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method, Chem. Phys. Lett. 303 (1999) 117-124.
DOI: 10.1016/s0009-2614(99)00202-x
Google Scholar
[11]
L. Huang, X. Cui, B. White, S.P.O. Brien, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition, J. Phys. Chem. B 108 (2004) 16451-16456.
DOI: 10.1021/jp0474125
Google Scholar
[12]
T.Y. Lee, J.H. Han, S.H. Choi, J.B. Yoo, C.Y. Park, T. Jung, S.G. Yu, J. Lee, W. Yi, J.M. Kim, Comparison of source gases and catalyst metals for growth of carbon nanotube, Surf. Coat. Technol. 169 (2003) 348-352.
DOI: 10.1016/s0257-8972(03)00108-7
Google Scholar
[13]
S.P. Chai, S.H.S. Zein, A.R. Mohamed, The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane, Carbon 45 (2007) 1535-1541.
DOI: 10.1016/j.carbon.2007.03.020
Google Scholar
[14]
S.P. Chai, S.H.S. Zein, A.R. Mohamed, Moderate temperature synthesis of single-walled carbon nanotubes on alumina supported nickel oxide catalyst, Mater. Lett. 61 (2007) 3519-3521.
DOI: 10.1016/j.matlet.2006.11.108
Google Scholar
[15]
S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Germany, 2004.
DOI: 10.1007/s00396-004-1180-6
Google Scholar
[16]
H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260 (1996) 471-475.
DOI: 10.1016/0009-2614(96)00862-7
Google Scholar
[17]
M. Pérez-Cabero, I. Rodríguez-Ramos, A. Guerrero-Ruíz, Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor, J. Catal. 215 (2003) 305-316.
DOI: 10.1016/s0021-9517(03)00026-5
Google Scholar
[18]
A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural ( n, m) Determination of isolated single-wall carbon nanotubes by resonant raman scattering, Phys. Rev. Lett. 86 (2001) 1118-1121.
DOI: 10.1103/physrevlett.86.1118
Google Scholar
[19]
M. Milnera, J. Kürti, M. Hulman, H. Kuzmany, Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (2000) 1324-1327.
DOI: 10.1103/physrevlett.84.1324
Google Scholar
[20]
P.W. Voorhees, The theory of Ostwald ripening, J. Stat. Phys. 38 (1985) 231-252.
Google Scholar