A Study on the Effect of Calcination Temperature on the Graphitization of Carbon Nanotubes Synthesized by the Decomposition of Methane

Article Preview

Abstract:

The effect of calcination temperature for Fe2O3/MgO catalysts on the formation of carbon nanotubes (CNTs) was examined. CNTs were synthesized over Fe2O3/MgO catalysts calcined at different temperatures by catalytic decomposition of methane at 1000°C. The synthesized CNTs were investigated by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results show that the effect of calcination temperatures greatly governed the diameter and the quality of the SWCNTs formed. The catalysts calcined at 500, 600 and 700°C produced CNTswith the diameters of 1.53, 1.95 and 2.97nm, respectively. Generally, an increase in the calcination temperature increases the average diameter and decreases the quality of the CNTs produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363 (1993) 605-607.

DOI: 10.1038/363605a0

Google Scholar

[3] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.

DOI: 10.1038/363603a0

Google Scholar

[4] J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296 (1998) 195-202.

DOI: 10.1016/s0009-2614(98)01024-0

Google Scholar

[5] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Catalytic growth of single-walled notubes by laser vaporization, Chem. Phys. Lett. 243 (1995) 49-54.

DOI: 10.1016/0009-2614(95)00825-o

Google Scholar

[6] A. Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, L. Schlapbach, Hydrogen storage in carbon nanostructures, Int. J. Hydrogen Energy 27 (2002) 203-212.

DOI: 10.1016/s0360-3199(01)00108-2

Google Scholar

[7] H.F. Cheng, Y.M. Tsau, T.Y. Chang, T.S. Lai, T.F. Kuo, I.N. Lin, Electron field emission properties of carbon nanotubes grown on tungsten wire. Physica B 323 (2002) 158-160.

DOI: 10.1016/s0921-4526(02)00887-6

Google Scholar

[8] H. Dai, Carbon Nanotubes: Synthesis, Integration, and Properties. Accounts Chem. Res. 35 (2002) 1035-1044.

DOI: 10.1021/ar0101640

Google Scholar

[9] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360 (2002) 229-234.

DOI: 10.1016/s0009-2614(02)00838-2

Google Scholar

[10] K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Konya, J.B. Nagy, Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method, Chem. Phys. Lett. 303 (1999) 117-124.

DOI: 10.1016/s0009-2614(99)00202-x

Google Scholar

[11] L. Huang, X. Cui, B. White, S.P.O. Brien, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition, J. Phys. Chem. B 108 (2004) 16451-16456.

DOI: 10.1021/jp0474125

Google Scholar

[12] T.Y. Lee, J.H. Han, S.H. Choi, J.B. Yoo, C.Y. Park, T. Jung, S.G. Yu, J. Lee, W. Yi, J.M. Kim, Comparison of source gases and catalyst metals for growth of carbon nanotube, Surf. Coat. Technol. 169 (2003) 348-352.

DOI: 10.1016/s0257-8972(03)00108-7

Google Scholar

[13] S.P. Chai, S.H.S. Zein, A.R. Mohamed, The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane, Carbon 45 (2007) 1535-1541.

DOI: 10.1016/j.carbon.2007.03.020

Google Scholar

[14] S.P. Chai, S.H.S. Zein, A.R. Mohamed, Moderate temperature synthesis of single-walled carbon nanotubes on alumina supported nickel oxide catalyst, Mater. Lett. 61 (2007) 3519-3521.

DOI: 10.1016/j.matlet.2006.11.108

Google Scholar

[15] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Germany, 2004.

DOI: 10.1007/s00396-004-1180-6

Google Scholar

[16] H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260 (1996) 471-475.

DOI: 10.1016/0009-2614(96)00862-7

Google Scholar

[17] M. Pérez-Cabero, I. Rodríguez-Ramos, A. Guerrero-Ruíz, Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor, J. Catal. 215 (2003) 305-316.

DOI: 10.1016/s0021-9517(03)00026-5

Google Scholar

[18] A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural ( n, m) Determination of isolated single-wall carbon nanotubes by resonant raman scattering, Phys. Rev. Lett. 86 (2001) 1118-1121.

DOI: 10.1103/physrevlett.86.1118

Google Scholar

[19] M. Milnera, J. Kürti, M. Hulman, H. Kuzmany, Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (2000) 1324-1327.

DOI: 10.1103/physrevlett.84.1324

Google Scholar

[20] P.W. Voorhees, The theory of Ostwald ripening, J. Stat. Phys. 38 (1985) 231-252.

Google Scholar