[1]
K. Wang, G. Ding, W. Jiang. Development of nanorefrigerant and its rudiment property. in 8th International Symposium on Fluid Control, Measurement and Visualization. 2005. Chengdu, China.
Google Scholar
[2]
W. Jiang, G. Ding, H. Peng, Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants, Int. J. Therm. Sci. 48 (2009) 1108-1115.
DOI: 10.1016/j.ijthermalsci.2008.11.012
Google Scholar
[3]
H. Peng, G. Ding, W. Jiang, H. Hu, Y. Gao, Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrig. 32 (2009) 1259-1270.
DOI: 10.1016/j.ijrefrig.2009.01.025
Google Scholar
[4]
I.M. Mahbubul, S.A. Fadhilah, R. Saidur, K.Y. Leong, M.A. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants, Int. J. Heat Mass Trans. 57 (2013) 100-108.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.007
Google Scholar
[5]
S. Bi, L. Shi, L. Zhang, Application of nanoparticles in domestic refrigerators, Appl. Therm. Eng. 28 (2008) 1834-1843.
Google Scholar
[6]
K. Henderson, Y.-G. Park, L. Liu, A.M. Jacobi, Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Trans. 53 (2010) 944-951.
DOI: 10.1016/j.ijheatmasstransfer.2009.11.026
Google Scholar
[7]
S. Bi, K. Guo, Z. Liu, J. Wu, Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid, Energy Convers. Manage. 52 (2011) 733-737.
DOI: 10.1016/j.enconman.2010.07.052
Google Scholar
[8]
H. Peng, G. Ding, W. Jiang, H. Hu, Y. Gao, Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrig. 32 (2009) 1756-1764.
DOI: 10.1016/j.ijrefrig.2009.06.005
Google Scholar
[9]
I.M. Mahbubul, R. Saidur, M.A. Amalina, Pressure drop characteristics of TiO2-R123 nanorefrigerant in a circular tube, Eng. e-Trans. 6 (2011) 124-130.
DOI: 10.1016/j.proeng.2013.03.126
Google Scholar
[10]
W. Jiang, G. Ding, H. Peng, Y. Gao, K. Wang, Experimental and Model Research on Nanorefrigerant Thermal Conductivity, HVAC&R Res. 15 (2009) 651-669.
DOI: 10.1080/10789669.2009.10390855
Google Scholar
[11]
I.M. Mahbubul, R. Saidur, M.A. Amalina, Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant, Int. Commun. Heat Mass Trans. 43 (2013) 100-104.
DOI: 10.1016/j.icheatmasstransfer.2013.02.004
Google Scholar
[12]
I.M. Mahbubul, R. Saidur, M.A. Amalina, Investigation of viscosity of R123-TIO2 nanorefrigerant, Int. J. Mech. Mater. Eng. 7 (2012) 146-151.
Google Scholar
[13]
G. Ding, H. Peng, W. Jiang, Y. Gao, The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture, Int. J. Refrig. 32 (2009) 114-123.
DOI: 10.1016/j.ijrefrig.2008.08.007
Google Scholar
[14]
H. Peng, G. Ding, H. Hu, Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: Experimental measurement, Int. J. Refrig. 34 (2011) 1823-1832.
DOI: 10.1016/j.ijrefrig.2011.07.010
Google Scholar
[15]
I.M. Mahbubul, A. Kamyar, R. Saidur, M.A. Amalina, Migration properties of TiO2 nanoparticles during the pool boiling of nanorefrigerants, Ind. Eng. Chem. Res. 52 (2013) 6032−6038
DOI: 10.1021/ie302006n
Google Scholar
[16]
J.K. Edzwald, J.P. Malley Jr, C. Yu, A conceptual model for dissolved air flotation in water treatment, Water Supply 9 (1991) 141-150.
Google Scholar
[17]
A.R. Henn, Calculation of the stokes and aerodynamic equivalent diameters of a short reinforcing fiber, Part. Part. Syst. Char. 13 (1996) 249-253.
DOI: 10.1002/ppsc.19960130407
Google Scholar