First-Principles Study of Polarization Behavior in BaTiO3/PbTiO3 Ferroelectric Superlattices

Article Preview

Abstract:

We performed the first principle calculation to investigate the polarization behavior of BaTiO3(BTO)/PbTiO3(PTO) superlattices with a period-5 superlattice model. The results show that when BTO proportion increases, values of c/a increase and polarizations decrease. In BPT superlattices, polarization in each local layer keeps a constant value, indicating that short-period BPT superlattices can be approximately considered as a single ferroelectric material. Moreover, from analysis of the electrostatic model, we know the directions of internal electric fields in BTO and PTO layers are opposite. Internal electric field in PTO layer leads to polarization loss in this layer, but polarization in BTO layer is enhanced by internal electric field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Neaton JB, Rabe KM. Appl Phys Lett (2003); 82: 1586.

Google Scholar

[2] Johnston K et al. Phys Rev B (2005); 71: 100103.

Google Scholar

[3] Rios S et al. J Phys Condens Matter (2003); 15: L305.

Google Scholar

[4] Shimuta T, Nakagawara O, Makino T. J Appl Phys (2002); 91: 2290.

Google Scholar

[5] Nakagawara O, Shimuta T, Makino T. Appl Phys Lett (2000); 77: 3257.

Google Scholar

[6] Tabata H, Tanaka H, Kawai T. Appl Phys Lett (1994); 65: (1970).

Google Scholar

[7] Kim Juho, Kin Younggnam, Kim Young Sung, Lee Jaichan. Appl Phys Lett (2002); 80: 3581.

Google Scholar

[8] Bungaro C, Rabe KM. Phys Rev B (2002); 65: 224106.

Google Scholar

[9] Bungaro C, Rabe KM. Phys Rev B (2004); 69: 184101.

Google Scholar

[10] Le Marrec F et al. Phys Rev B (2000); 61: R6447.

Google Scholar

[11] Duan YF, Qin LX, Tang G, Chen CQ. Phys Lett A (2010); 374: (2075).

Google Scholar

[12] Cooper VR, Rabe KM. Phys Rev B (2009); 79: 180101.

Google Scholar

[13] Wu Tai-Bor, Hung Cheng Lung. Appl Phys Lett (2005); 86: 112902.

Google Scholar

[14] Hung Cheng Lung, Chueh Yu-Lun, Wu Tai-Bor, Chou Li-Jen. J Appl Phys (2005) ; 97: 034105.

Google Scholar

[15] Jiang JC et al. Appl Phys Lett (1999); 74: 2851.

Google Scholar

[16] Yu T, Chen YF, Zhu YY, Liu ZG, Ming NB, Wu XS. Appl Surface Sci (1999); 138–139: 609–12.

Google Scholar

[17] Zhu ZY et al. Solid-state Electron. (2006); 50: 1756.

Google Scholar

[18] Zhu ZY et al. Chin Phys (2007); 16: 1780.

Google Scholar

[19] Hohenberg P, Kohn W. Phys Rev (1964); 136: 864.

Google Scholar

[20] Kohn W, Sham L. Phys Rev (1965); 140: A1133.

Google Scholar

[21] Baroni S, Dal Corso A, de Gironcoli S, et al. Available from: http: /www. pwscf. org.

Google Scholar

[22] Ceperley DM, Alder BJ. Phys Rev Lett (1980); 45: 566.

Google Scholar

[23] Perdew JP, Zunger A. Phys Rev B (1981); 23: 5048.

Google Scholar

[24] Vanderbilt D. Phys Rev B (1990); 41: R7892.

Google Scholar

[25] Monkhorst HJ, Pack JD. Phys Rev B (1976); 13: 5188.

Google Scholar

[26] Pack JD, Monkhorst HJ. Phys Rev B (1977); 16: 1748.

Google Scholar

[27] Zhong W, King-Smith RD, Vanderbilt D. Phys Rev Lett (1994); 72: 3618.

Google Scholar

[28] King-Smith RD, Vanderbilt D. Phys Rev B (1993); 47: 1651.

Google Scholar

[29] Vanderbilt D, King-Smith RD. Phys Rev B (1993); 48: 4442.

Google Scholar

[30] Axe JD. Phys Rev (1967); 157: 429.

Google Scholar

[31] Zheng Y, Wang B, Woo CH. Appl Phys Lett (2006); 88: 092903.

Google Scholar

[32] Zheng Y, Wang B, Woo CH. Appl Phys Lett (2006); 89: 062904.

Google Scholar

[33] Zheng Y, Wang B, Woo CH. Appl Phys Lett (2006); 89: 083115.

Google Scholar