Phase Structure of Nanocrystalline BaTiO3 Powders via One-Step Solvothermal Route

Article Preview

Abstract:

5 nm BaTiO3 powder has been successfully prepared by the one-step solvothermal method. The different grain size BaTiO3 powders have been achieved after calcining the 5 nm Nanocrystalline BaTiO3 powders at 700°C, 850°C and 950°C for 3 h. In-situ heating Raman spectroscopy revealed the dispersive phase transition character in the nanocrystalline BaTiO3 powders. As the BaTiO3 grain size decreases, wider phase transition temperature and the Raman intensity becomes weak. The BaTiO3 powders of the 5 nm nanocrystalline exhibited the similar phase transformations from rhombohedral to orthorhombic to tetragonal to cubic transitions as those in the coarse BaTiO3 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-12

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. E. Cross, Dielectric, Piezoelectric and Ferroelectric Components, Dielectric, Piezoelectric, and Ferroelectric Compoments, Am. Ceram. Soc. Bull. 63(1984)586–590.

Google Scholar

[2] D. Hennings, M. Klee, and R. Waser, Advanced Dielectrics: Bulk Ceramicsand Thin Films, Adv. Mater. 3(1991)334–440.

DOI: 10.1002/adma.19910030703

Google Scholar

[3] K. Suzuki, K. Kageyama, H. Takagi, and Y. Sakabe, Fabrication ofMonodispersed Barium Titanate Nanoparticles with Narrow Size Distribution,J. Am. Ceram. Soc. 91 (2008)1721–1724.

DOI: 10.1111/j.1551-2916.2008.02345.x

Google Scholar

[4] S. Yoon and S. Baik, Formation Mechanisms of Tetragonal Barium TitanateNanoparticles in Alkoxide–Hydroxide Sol-Precipitation Synthesis,J. Am. Ceram. Soc. 89(2006)1816–1821.

DOI: 10.1111/j.1551-2916.2006.01056.x

Google Scholar

[5] F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, London, (1962).

Google Scholar

[6] H. Du, S. Wohlrab, M. Wei, and S. Kaskel, Preparation of BaTiO3Nanocrystals Using a Two-Phase Solvothermal Method, J. Mater. Chem. 17(2007)4605–4610.

DOI: 10.1039/b708914g

Google Scholar

[7] N. Sasirekha, B. Rajesh, and Y. W. Chen, Hydrothermal Synthesis of Barium Titanate: Effect of Titania Precursor andCalcination Temperature on Phase Transition, Ind. Eng. Chem. Res. 47 (2008) 1868–1875.

DOI: 10.1021/ie070986m

Google Scholar

[8] X. Wei, G. Xu, Z. H. Ren, Y. G. Wang, G. Shen, and G. Hanw, Synthesis of Highly Dispersed Barium Titanate Nanoparticles bya Novel Solvothermal Method, J. Am. Ceram. Soc. 91(2008)315–318.

DOI: 10.1111/j.1551-2916.2007.02098.x

Google Scholar

[9] Y. B. Mao, S. Banerjee and S. S. Wong, Hydrothermal synthesis of perovskite nanotubes, Chem. Commun. 3 (2003) 408–409.

Google Scholar

[10] M. Boulosa, S. Guillemet-Fritsch, F. Mathieu, et al., Hydrothermal synthesis of nanosized BaTiO3 powders anddielectric properties of corresponding ceramics, Solid State Ionics 176 (2005) 1301–1309.

DOI: 10.1016/j.ssi.2005.02.024

Google Scholar

[11] M. Niederberger,G. Garnweitner, N. Pinna and M. Antonietti, Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 Nanoparticles via a MechanismInvolving C-C Bond Formation, J. Am. Chem. Soc. 126(2004)9120–9126.

DOI: 10.1002/chin.200440027

Google Scholar

[12] M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti, A GeneralSoft-Chemistry Route to Perovskites and Related Materials: Synthesis of BaTiO3, BaZrO3, and LiNO3 Nanoparticles, Angew. Chem. Int. Ed. 43(2004)2270–2273.

DOI: 10.1002/anie.200353300

Google Scholar

[13] H. Zhang, X. Wang, Z. Tian, C. Zhong, Y. Zhang, C. Sun, and L. Li, Fabrication of Monodispersed 5-nm BaTiO3 Nanocrystals with Narrow SizeDistribution via One-Step Solvothermal RouteJ. Am. Ceram. Soc. 94(2011)3220-3222.

DOI: 10.1111/j.1551-2916.2011.04805.x

Google Scholar