[1]
F.L. Litvin, J. Wang, R.B. Bossler, Y.D. Chen, and G. Heath, Face-Gear Drives: Design, Analysis, and Testing for Helicopter Transmission Applications, United States, 1992, pp. 16p.
Google Scholar
[2]
D.A. Binney, H. Vinayak, Y. Gmirya, L.M. Zunski, D.R. Houser, and E.C. Ames, Face Gear Transmission Development Program at Sikorsky Aircraft. ASME Conference Proceedings 2003 (2003): 307-313.
DOI: 10.1115/detc2003/ptg-48039
Google Scholar
[3]
F.L. Litvin, A. Egelja, J. Tan, D.Y.D. Chen, and G. Heath, Handbook on Face Gear Drives with a Spur Involute Pinion, United States, 2000, pp. 107p.
Google Scholar
[4]
A. Kahraman, and R. Singh, Non-linear dynamics of a spur gear pair. Journal of Sound and Vibration 142 (1990): 49-75.
DOI: 10.1016/0022-460x(90)90582-k
Google Scholar
[5]
G. Blankenship, and A. Kahraman, Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity. Journal of Sound and Vibration 185 (1995): 743-765.
DOI: 10.1006/jsvi.1995.0416
Google Scholar
[6]
K. Sato, and S. Yamamoto, Bifurcation sets and chaotic states of a gear system subjected to harmonic excitation. Computational Mechanics 7 (1991): 173-182.
DOI: 10.1007/bf00369977
Google Scholar
[7]
A. Raghothama, and S. Narayanan, Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. Journal of Sound and Vibration 226 (1999): 469-492.
DOI: 10.1006/jsvi.1999.2264
Google Scholar
[8]
S. Theodossiades, and S. Natsiavas, Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. Journal of Sound and Vibration 229 (2000): 287-310.
DOI: 10.1006/jsvi.1999.2490
Google Scholar
[9]
S. Theodossiades, and S. Natsiavas, Periodic and chaotic dynamics of motor-driven gear-pair systems with backlash. Chaos, Solitons & Fractals 12 (2001): 2427-2440.
DOI: 10.1016/s0960-0779(00)00210-1
Google Scholar
[10]
C. -W. Chang-Jian, and C. -K. Chen, Bifurcation analysis of flexible rotor supported by couple-stress fluid film bearings with non-linear suspension systems. Tribology International 41 (2008): 367-386.
DOI: 10.1016/j.triboint.2007.09.007
Google Scholar
[11]
C. -W. Chang-Jian, and C. o. -K. Chen, Chaos of rub–impact rotor supported by bearings with nonlinear suspension. Tribology International 42 (2009): 426-439.
DOI: 10.1016/j.triboint.2008.08.002
Google Scholar
[12]
C. -W. Chang-Jian, Strong nonlinearity analysis for gear-bearing system under nonlinear suspension—bifurcation and chaos. Nonlinear Analysis: Real World Applications 11 (2010): 1760-1774.
DOI: 10.1016/j.nonrwa.2009.03.027
Google Scholar
[13]
C. -W. Chang-Jian, and S. -M. Chang, Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Analysis: Real World Applications 12 (2011): 979-989.
DOI: 10.1016/j.nonrwa.2010.08.021
Google Scholar
[14]
G. Tordion, and R. Gauvin, Dynamic stability of a two-stage gear train under the influence of variable meshing stiffnesses. Journal of Engineering for Industry 99 (1977): 785.
DOI: 10.1115/1.3439314
Google Scholar
[15]
C. -S. Chen, S. Natsiavas, and H. Nelson, Stability analysis and complex dynamics of a gear-pair system supported by a squeeze film damper. Journal of Vibration and Acoustics 119 (1997): 85-88.
DOI: 10.1115/1.2889691
Google Scholar
[16]
T. Shiau, J. Chang, and S. Choi, Stability analysis of a gear pair system supported by squeeze-film dampers. International Journal of Rotating Machinery 7 (2001): 143-151.
DOI: 10.1155/s1023621x01000124
Google Scholar
[17]
H. Wolf, Z. Terze, and A. Sušić, Dynamical stability of the response of oscillators with discontinuous or steep first derivative of restoring characteristic. European Journal of Mechanics - A/Solids 23 (2004): 1041-1050.
DOI: 10.1016/j.euromechsol.2004.08.001
Google Scholar
[18]
M. Wang, and F. Su, Numerical Research on Stochastic Duffing System. Procedia Engineering 29 (2012): 1979-(1983).
DOI: 10.1016/j.proeng.2012.01.247
Google Scholar