Frequency of Bubble Formation in Modified Bubble Electrospinning

Article Preview

Abstract:

Bubble-electrospinning is one of the most straightforward ways to fabricate polymer solution into nanofibers. The key point of the technology is to control bubble size and formation frequency. A modified bubble electrospinning set-up is designed to control the size of polymer bubbles and frequency of bubble formation in the spinning process. A PVA (10wg %) solution is used in the experiment for fabricate polymer solution into nanofibers and superfine nanofibers are obtained with the average diameter of about 200nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-48

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen, T.X. Liu, X.P. Zhou, W.C. Tjiu, H.Q. Hou. Electrospinning Fabrication of High Strength and Toughness Polyimide Nanofiber Membranes Containing Multiwalled Carbon Nanotubes, J. Phys. Chem. 29 (2009) 9741-9748.

DOI: 10.1021/jp9025128

Google Scholar

[2] P.P. Tsai, J.R. Roth, W.W. Chen. Strength, Surface Energy, and Ageing of Meltblown and Electrospun Nylon and Polyurethane (PU) Fabrics Treated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™), Text Res J. 12 (2005) 819-825.

DOI: 10.1177/0040517505057526

Google Scholar

[3] J.P. Tessonnier, L. Pesant, C. Pham-Huu, G. Ehret, M.J. Ledoux. Carbon nanotubes: a highly selective support for the C=C hydrogenation reaction, Stud. Surf. Sci. Catal. 143(2002) 697-704.

DOI: 10.1016/s0167-2991(00)80712-0

Google Scholar

[4] Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, C. Y. Yang. Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays, Nano Lett. 12 (2004) 2403-2407.

DOI: 10.1021/nl048506t

Google Scholar

[5] L.X. He, S.C. Tjong. Nonlinear electrical conduction in percolating systems induced by internal field emission, J. Nanosci. Nanotechno.5 (2011) 3916-3921.

DOI: 10.1016/j.synthmet.2010.12.007

Google Scholar

[6] J.H. He, Effect of temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication, Therm. Sci., 16(2012)325-328.

DOI: 10.2298/tsci111111033h

Google Scholar

[7] J.H. He, Y. Liu, L. Xu, et al. BioMimic fabrication of electrospun nanofibres with high-throughput, Chaos Soliton. Fract., 37(2008) 643-651.

DOI: 10.1016/j.chaos.2007.11.028

Google Scholar

[8] Y. Liu, J.H. He, L. Xu, et al. The principle of bubble electrospinning and its experimental verification, J. Polym. Eng., 28(2008) 55-65.

Google Scholar

[9] J.H. He , Y. Liu , L. Xu, Apparatus for preparing electrospun nanofibres: a comparative review , Mater. Sci. Tech., 26(2010)1275-1287.

DOI: 10.1179/026708310x12798718274430

Google Scholar

[10] R.R. Yang, J.H. He , J.Y. Yu, et al., Bubble-electrospinning for Fabrication of Nanofibres with Diameter of about 20nm, Int. J. Nonlin. Sci. Num., 11(2010)163-164.

Google Scholar

[11] J.H. He, Y. Liu, Control of bubble size and bubble number in bubble electrospinning, Computers and Mathematics with Applications, 64(2012)1033-1035.

DOI: 10.1016/j.camwa.2012.03.021

Google Scholar

[12] J.H. He, Y. Liu , L.F. Mo, et al., Elelectrospun Nanofibres and their applications, Smithers Rapra Update , Shawbury , UK , (2008)

Google Scholar